Statistical comparison between the adjustment equations of the water retention curve in sanitary landfills coverage soil

Publicado
2022-03-06

    Autores/as

  • Alexandre de Souza Júnior Universidade Federal de Campina Grande (UFCG), Campina Grande, PB
  • Bruna Silveira Lira Universidade Federal de Campina Grande (UFCG), Campina Grande, PB
  • Henrique Antônio Oliveira Araújo Universidade Federal de Campina Grande (UFCG), Campina Grande, PB
  • Jeovanesa Régis Carvalho Universidade Federal de Campina Grande (UFCG), Campina Grande, PB
  • Maria Natália de Melo Sousa Universidade Federal de Campina Grande (UFCG), Campina Grande, PB
  • Pabllo da Silva Araujo Universidade Federal de Campina Grande (UFCG), Campina Grande, PB
  • Renan Ítalo Leite Gurjão Universidade Federal de Campina Grande (UFCG), Campina Grande, PB
  • William de Paiva Universidade Federal de Campina Grande (UFCG), Campina Grande, PB

Resumen

Residual soils result from chemical weathering, so their characteristics depend on environmental factors, in addition to origin, topography, drainage and geological age. In the unsaturated condition, the behavior of soils is conditioned by suction, which refers to the state of the soil under reduced pressure. The aim of this study is to compare the water retention curve fitting equations in the study of tropical unsaturated soils through the filter paper technique and the analytical analysis of the data obtained in this test. By performing the analysis of the statistical evaluation parameters used in this study and the proximity of its values to the necessary boundary conditions defined for the equation to explain the soil suctioning behavior of the soil as it loses moisture naturally to the environment, it was verified that the Van Genuchten equation appeared to be the most suitable.

Citas

ABED, A. A.; SOŁOWSKI, W, T. A study on how to couple the thermo-hydromechanical behavior of unsaturated soils: Physical equations, numerical implementation and examples. Computers and Geotechnics, v. 92, p. 132-155, 2017. https://doi.org/10.1016/j.compgeo.2017.07.021

ABNT. NBR 6457: Soil sample: preparation for compaction tests and characterization tests. Rio de Janeiro: ABNT, 2016a. 8p.

ABNT. NBR 6458: Gravel gravel retained in the opening sieve 4.8 mm - Determination of specific mass, apparent specific mass and water absorption. Rio de Janeiro, RJ : - ABNT, 2016b. 10p.

ABNT. NBR 6459: Determination of the liquidity limit. Rio de Janeiro, RJ: ABNT, 2016c. 5p.

ABNT. NBR 7180: Determination of the plasticity limit -. ABNT, Rio de Janeiro, RJ: ABNT, 2016d. 3p.

ABNT. NBR 7181: Particle size analysis. Rio de Janeiro, RJ: ABNT, 2016e. 12p.

ABNT. NBR 7182: Compaction – Procedure. Rio de Janeiro, RJ: ABNT, 2016f. 9p.

ABNT. NBR 14545: Soil: determination of the permeability coefficient of clayey soils at variable load. Rio de Janeiro, RJ: ABNT, 2000. 12p.

AESA – AGÊNCIA EXECUTIVA DE GESTÃO DAS ÁGUAS DO ESTADO DA PARAÍBA. Meteorologia, monitoramento. AESA, Fev. 2017. Disponível em http://site2.aesa.pb.gov.br/aesa/medicaoPluviometrica.do?metodo=listarClimatologiasMensais.

ALONSO, E. E.; GENS, A.; HIGHT, D.W. Special problems soils – General Report, Proc. 9th European Conference on Soil Mechanics and Foundation Engineering, Dublin, v. 3, p.1087-1146, 1987.

ARAUJO, P. S. Analysis of the performance of a compacted soil used in the covering layer of a sanitary landfill. Dissertation, Post-graduation in Civil and Environmental Engineering. Federal University of Campina Grande, Campina Grande, 2017. 138p.

ASTM. Standard test method for measurement of soil potential (suction) using filter paper - D5298. ASTM International, West Conshohocken, PA, USA, 2010. 6p.

ASTM. Standard practice for classification of soils for engineering purposes (Unified Soil Classification System) - D2487. ASTM International, West Conshohocken, PA, USA, 2011. 12p.

BRUTSAERT, W. Some methods of calculating unsaturated permeability. Transactions of ASABE, v.10, n.3, p.400-404, 1967. https://doi.org/10.13031/2013.39683

CAMAPUM DE CARVALHO, J.; GITIRANA JR., G. F. N.; MACHADO, S. L.; MASCARENHA, M. M. A.; SILVA FILHO, F. C. Unsaturated soils in the geotechnical context. 1st ed. Brazilian Association of Soil Mechanics and Geotechnical Engineering, São Paulo, 2015. 759p.

CHANDLER, R. J.; CRILLEY, M. S.; MONTGOMERY-SMITH, G. A low-cost method of assessing clay desiccation for low-rise buildings. In: Proceedings of the Institution of Civil Engineers – Civil Engeneering. Thomas Telford-ICE Virtual Library, p.82-89, 1992. https://doi.org/10.1680/icien.1992.18771

DAS, B. M.; SIVAKUGAN, N. Fundamentals of geotechnical engineering. Cengage Learning, 5th edition, 2016.

DANTAS NETO, J. A.; CATEANO NETTO, E. A.; NASCIMENTO JÚNIOR, L. F.; DELMOND, J. G. Study of soils with different textures in optimal compaction humidity. Proc. 7th Academic Semester of the University of Goiás Santa Helna de Goiás campus. v.1, n. 1, 2013. 4p.

DNIT. Hot bituminous mixtures - Marshall test – ME-043. DNIT, Rio de Janeiro, RJ, Brazil, 1995. 11p.

FREDLUND, D. G. State Variables in Saturated-Unsaturated Soil Mechanics. Soils and Rocks, São Paulo, v. 39, n. 1, p. 3-17, 2016. https://doi.org/10.28927/SR.391003

FREDLUND, D. G.; MORGENSTERN, N. R.Stress state variables for unsaturated soils. Journal of The Geotechnical Engineering Division, v.103, n.5, p.447-465, 1977. https://doi.org/10.1061/AJGEB6.0000423

FREDLUND, D. G.; RAHARDJO, H. Soil mechanics for unsaturated soils. 1.ed. John Willey & Sons, Danvers/Massachusetts/USA, 1993. 576p. https://doi.org/10.1002/9780470172759

FREDLUND, D. G.; XING, A. Equations for the soil water characteristic curve. Canadian Geotechnical Journal, v.31, n.4, p.521-532, 1994. https://doi.org/10.1139/t94-061

FREDLUND, D. G.; XING, A.; FREDLUND, M. D.; BARBOUR, S. L. The relationship of the unsaturated soil shear strengh to the soil-water characteristic curve. Canadian Geotechnical Journal, v. 33, n.3, p.440-448, 1996. https://doi.org/10.1139/t96-065

GARDNER, W. R. Representation of soil aggregate size distribution by a logarithmicnormal distribution. Soil Science Society of America Proceedings, v. 20, n.2, p.151-153, 1956. https://doi.org/10.2136/sssaj1956.03615995002000020003x

GERSCOVICH, D. M. S.; SAYÃO, A. S. F. J. Evaluation of the soil-water characteristiccurves equations for soils from Brazil. In: INTERNATIONAL CONFERENCE ON UNSATURATED SOILS, 3., 2002. Proceedings […]. Recife: v.1, p.293-300, 2002.

GITIRANA JR., G. F. N.; FREDLUND, D. G. Soil-water characteristic curve equation with independent parameters. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, v. 130, n. 2, p.209-212, 2004. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:2(209)

GARAKANI, A A.; HAERI, S. M.; CHERATI, D. Y.; GIVI, F. A.; TADI, M. K.; HASHEMI, A. H.; QAHREMANI, F. Effect of road salts on the hydro-mechanical behavior of unsaturated collapsible soils. Transportation Geotechnics, 2018. https://doi.org/10.1016/j.trgeo.2018.09.005

KNAPPETT, J. A.; CRAIG, R. F. Craig mechanical soil. Rio de Janeiro: LTC, 2016. 419p.

KUCHIISHI, A. K.; ANTÃO, C. C. S.; VASCONCELOS, K.; PIRES, J.; ARAÚJO, O. M. O.; BERNUCCI, L. L. B.; LOPES, R. T. Investigation of the role of matrix suction in the curing mechanism of stabilized mixes with foamed bitumen. Road materials and paving project, 1-25, 2019. https://doi.org/10.1080/14680629.2019.1589558

MARINHO, F. A. M. Measurement of suction in soils. Proc. 3rd Brazilian Symposium on Unsaturated Soils, v.2, p.373-397, 1997.

MCKEE, C. R.; BUMB, A. C. Flow-testing coalbed methane production wells in the presence of water and gas. Society of Petroleum Engineers Formation Evaluation, v.2, n. 4, p.599- 608, 1987. https://doi.org/10.2118/14447-PA

PINTO, C. S. Basic course of soil mechanics in 16 classes. 3. ed. Oficina de textos, São Paulo, 2006. 367p.

RAMOS, T. B.; GONÇALVES, M. C.; MARTINS, J. C.; PEREIRA, L. S. Water retention characteristics in soil for use in crop irrigation. National Institute of Agrarian and Veterinary Research, Oeiras, 2016. 76p.

SÁ, I. B. & SILVA, P. C. G. Brazilian semi-arid: research development and innovation. Embrapa Semiárido, Petrolina, 2010. 402p.

SCARIOT, K. A. DE L.. Parametric study of the shear strength of a low support bearing soil. Dissertation, Post-graduation in Civil and Environmental Engineering. Federal University of Campina Grande, Campina Grande, 2018.

SILVA, T. A Evaluation of the influence of suction and degree of weathering on the lateral buoyancy coefficient (k0) of residual soils. Dissertation, Post-graduation in Civil Engineering. Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, 2017. 105p.

VAN GENUCHTEN, M. T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, v.44, n.5, p.892-898, 1980. https://doi.org/10.2136/sssaj1980.03615995004400050002x

RAHARDJO, H., KIM, Y.; SATYANAGA, A. Role of unsaturated soil mechanics in geotechnical engineering. Geo-Engineering v. 10, n. 8, 2019. https://doi.org/10.1186/s40703-019-0104-8

SÁNCHEZ, M.; GENS, A.; VILLAR, M. V.; OLIVELLA, S. Fully Coupled Double Porosity Thermo-Hydro-Mechanical Formulation for Unsaturated Soils. International Journal of Geomechanics, v. 16, n. 6, 2016. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000728

ZHENG, F., SHAO, S., WANG, J.,; SHAO, S. Experimental Study of the Mechanical Behavior of Natural Loess Based on Suction-Controlled True Triaxial Tests. KSCE Journal of Civil Engineering, 2020.

https://doi.org/10.1007/s12205-020-1386-2

Cómo citar
Souza Júnior, A. de, Lira, B. S., Araújo, H. A. O., Carvalho, J. R. ., Sousa, M. N. de M., Araujo, P. da S. ., Gurjão, R. Ítalo L. ., & Paiva, W. de. (2022). Statistical comparison between the adjustment equations of the water retention curve in sanitary landfills coverage soil. Águas Subterrâneas, 35(3), e–30073. https://doi.org/10.14295/ras.v35i3.30073