Influence of an external condenser on the tray-type solar desalinator to obtain desalinized water in the municipality of Queimadas

Published
2023-04-28
Keywords: Escassez de água, Radiação solar, Energia solar, Agua potável. Water scarcity, Solar radiation, Solar energy, Potable water.

    Authors

  • Wanderley Viana Universidade Estadual da Paraíba (UEPB), Campina Grande, PB
  • Genilma Maria Gonçalves da Rocha Universidade Estadual da Paraíba (UEPB), Campina Grande, PB https://orcid.org/0000-0002-7890-1023
  • Carlos Antônio Pereira de Lima Universidade Estadual da Paraíba (UEPB), Campina Grande, PB https://orcid.org/0000-0002-1301-6066
  • Keila Machado de Medeiros Universidade Federal do Recôncavo da Bahia (UFRB), Cruz das Almas, BA https://orcid.org/0000-0001-9250-1432

Abstract

The dual-slope solar tray-type desalinator was used to obtain treated water. The aim of this study was to evaluate the performance of the solar desalination water production with an external condenser and the physico-chemical characteristics of the water before and after the desalination process. Brackish water from the Sítio Alto dos Cordeiros well in the Queimadas municipality of Paraíba state was used as the source of water to be treated. The solar desalinator has an area of 4 m², with the solar desalinator control (D1) and the solar desalinator with external condenser (D2+C) used in the experiment. The saline water used in the experiment had an electrical conductivity of 1820 µS.cm-1 and a pH of 7.3. The most significant observed results were the maximum production of potable water on November 19, 2022, where a value of 8.6 L.day-1 was obtained for the solar desalinator with external condenser (D2+C), while the solar desalinator (D2) produced 7.61 L.day-1  and the external condenser produced 0.99 L.day-1  The solar radiation index was 874.8 W.m-2 for the two solar desalination units, and the saline water depth was 1cm. The results of the physical-chemical analysis of the brackish and desalinated waters showed a reduction in electrical conductivity of 99.07% for (D1) with a pH of 7.3 and 99.56% for (D2+C) with a pH of 7.3 on November 19, and a reduction of 99.45% for (D1) with a pH of 6.03 and 99.4% for (D2+C) with a pH of 6.4 on November 22 after the desalination process, reaching values in accordance with the potability standards required by the current Ministry of Health regulations in the country.

References

BAIRD, R. B.; EATON, A. D.; RICE, E. W. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington D.C., n. 23, 2017.

BOUZAID, M.; ANSARI, O.; TAHA-JANAN, M.; MOUHSIN, N.; OUBREK, M. Numerical Analysis of Thermal Performances for a Novel Cascade Solar Desalination Still Design. Energy Procedia, [S. N.], p. 1071–1082, 2019.

https://doi.org/10.1016/j.egypro.2018.11.274

BRITO, Y. J. V. D. et al. Estudo experimental de um dessalinizador solar do tipo bandeja com dupla inclinação para potabilização de água no semiárido paraibano. Águas Subterrâneas, v. 32, n. 2, p. 156-165, maio 2020. https://doi.org/10.14295/ras.v34i2.29773

HU, Y.; YAO, H.; LIAO, Q.; LIN, T.; CHENG, H.; QU, L. The promising solar-powered water purification based on graphene functional architectures. EcoMat, Nova Jersey, p. 1-15, February 2022. https://doi.org/10.1002/eom2.12205

HUA, W. S.; XU, H. J.; XIE, W. H. Review on adsorption materials and system configurations of the adsorption desalination applications. Applied Thermal Engineering, [S. N.], p. 1-28, December 2021.

https://doi.org/10.1016/j.applthermaleng.2021.117958

INEP. Médias do total diário da irradiação direta normal para o Estado da Paraíba. Instituto Nacional de Pesquisas Espaciais. São José dos Campos-SP. 2021.

LIRA, R. M. DE; GORDIN, L. C.; SILVA, E. F. DE F. E; SILVA, G. F. DA; DANTAS, D. DA C.; MORAIS, J. E. F. DE. Leaching of cations in soil cultivated with sugarcane subjected to saline irrigation and leaching fractions. Revista Brasileira de Engenharia Agrícola e Ambiental, Campina Grande, PB, v. 22, n. 9, p. 616-621, Abr./Jul. 2018. ISSN 1807-1929.

https://doi.org/10.1590/1807-1929/agriambi.v22n9p616-621

LOPES, J. T.; MIRANDA, R. F. DE; MARTINS, K. C. R.; BELFORT, J. F.; RAMOS, S. R. R. Eficiência de um dessalinizador solar simétrico com bacia parabólica composto disposto em paralelo. Brazilian Journal of Development, Curitiba, v. 7, n. 4, p. 35722-35733, mar./abr. 2021. ISSN 2525-8761. https://doi.org/10.34117/bjdv7n4-165

MAHARJAN, S.; JOSHI, T. P.; SHRESTHA, S. M. Poor Quality of Treated Water in Kathmandu: Comparison with Nepal Drinking Water Quality Standards. Tribhuvan University Journal of Microbiology, [S. N.], v. 5, p. 83-88, December 2018. ISSN 2382-5499. https://doi.org/10.3126/tujm.v5i0.22319

MARINHO, F. J. L.; LEITE, S. F. Tecnologia social: dessalinizador solar. In: MARINHO, F. J. L.; LEITE, S. F. Coleção Agrobiodiversidade. 1. ed. Campina Grande: Plural Editorial, v. 1, 2020. p. 1-36.

PORTARIA GM/MS Nº 888. dispor sobre os procedimentos de controle e de vigilância da qualidade da água para consumo humano e seu padrão de potabilidade. Ministerio de Estado da Saúde., Distrito Federal, p. 1-49, 2021.

TORTAJADA, C.; NAMBIAR, S. Communications on Technological Innovations: Potable Water Reuse. Water, Basel, Switzerland, p. 1-29, January 2019. https://doi.org/10.3390/w11020251

ZHANG, H.; ZHU, S.; YANG, J.; MA, A. Advancing Strategies of Biofouling Control in Water-Treated Polymeric Membranes. Polymers, [S. N.], p. 1-23, March 2022. https://doi.org/10.3390/polym14061167

How to Cite
Viana, W. ., Rocha, G. M. G. da ., Lima, C. A. P. de ., & Medeiros, K. M. de . (2023). Influence of an external condenser on the tray-type solar desalinator to obtain desalinized water in the municipality of Queimadas. Águas Subterrâneas, 37(2), –30212. https://doi.org/10.14295/ras.v37i2.30212