Removal of acid red 18 dye in aqueous solution by the Fenton process

Published
2023-02-26
Keywords: Food dye, Colored water, Advanced oxidation, Factorial design. Corante alimentício, Água colorida, Oxidação avançada, Planejamento fatorial.

    Authors

  • Helísia Pessoa Linhares Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Fortaleza, CE, Brasil. https://orcid.org/0000-0002-9168-9303
  • Jackson Anderson Sena Ribeiro Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Fortaleza, CE, Brasil. https://orcid.org/0000-0003-0704-2927
  • Emanoel Jessé Rodrigues Sousa Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Fortaleza, CE, Brasil. https://orcid.org/0000-0001-8891-1957
  • Fábio Farias de Lima Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Fortaleza, CE, Brasil. https://orcid.org/0000-0002-6799-0913
  • Hugo Leonardo de Brito Buarque Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Fortaleza, CE, Brasil. https://orcid.org/0000-0002-8965-3846
  • Waleska Martins Eloi Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Fortaleza, CE, Brasil. https://orcid.org/0000-0002-2724-4510
  • Gloria Maria Marinho Silva Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Fortaleza, CE, Brasil. https://orcid.org/0000-0002-2515-5856
  • Rinaldo dos Santos Araújo Instituto Federal de Educação, Ciência e Tecnologia do Ceará (IFCE), Fortaleza, CE, Brasil. https://orcid.org/0000-0003-2609-436X

Abstract

Dyes are potential sources of contamination of surface and groundwater. Coloring molecules are in general very recalcitrant and produce strong environmental and human health impacts. Among the different methodologies used in the treatment of colored effluents, there are the Advanced Oxidative Processes (AOP) with emphasis in photolytic systems with UV radiation, chemical systems with H2O2 and O3 and catalytic processes (Fenton treatments). In the present work, the degradation capacity of the azo dye Acid Red 18 was evaluated using the Fenton system with FeSO4.7H2O and H2O2. The degradation tests were carried out at room temperature (25 oC), pH = 3.0 and agitation at 150 rpm according to a factorial design to evaluate the effect of the initial dye concentration variables (50 mg.L-1 to 150 mg.L-1), FeSO4.7H2O concentration and H2O2 concentration (both between 33 mg.L-1 and 67 mg.L-1) in the dye removal. Experimentally, dye degradation greater than 93% was found for any level of H2O2 used under a concentration of FeSO4.7H2O of 40 mg.L-1 after 60 minutes of treatment. The optimal operating conditions estimated from the regression of the degradation efficiency values were 109.7 mg.L-1 of dye; 41.6 mg.L-1 of FeSO4.7H2O and 37.2 mg.L-1 of H2O2. In general, the results found show the promising character of the Fenton process in the decolorization of azo dyes in aqueous media.

References

BRASIL. MINISTÉRIO DO MEIO AMBIENTE. Resolução – RE N° 430, de 13 de maio de 2011. Dispõe sobre as condições e padrões de lançamento de efluentes, complementa e altera a resolução n° 357, de 17 de março de 2005, do Conselho Nacional do Meio Ambiente – CONAMA. 2011. http://conama.mma.gov.br/?option=com_sisconama&task=arquivo.download&id=627

CHEN, K.; WANG, G. H.; LI, W. B.; WAN, D.; HU, Q.; LU, L. L. Application of response surface methodology for optimization of Orange II removal by heterogeneous Fenton-like process using Fe3O4 nanoparticles. Chinese Chemical Letters, v. 25, p. 1455-1460, 2014.

https://doi.org./10.1016/J.CCLET.2014.06.014

CHEN, Y.; DUAN, X.; ZHOU, X.; WANG, R.; WANG, S.; REN, N. Q.; HO, S. H. Advanced oxidation processes for water disinfection: Features, mechanisms and prospects. Chemical Engineering Journal, v. 409, p. 128207, 2021. https://doi.org/10.1016/J.CEJ.2020.128207

DEZOTTI, M. C. Processos e Técnicas para o Controle Ambiental de Efluentes Líquidos. Rio de Janeiro: Série Escola Piloto de Engenharia Química, 2008. 360p.

FAYAZI, M. Preparation and characterization of carbon nanotubes/pyrite nanocomposite for degradation of Methylene Blue by a heterogeneous Fenton reaction. Journal of the Taiwan Institute of Chemical Engineers, v. 120, p. 229-235, 2021. https://doi.org/10.1016/j.jtice.2021.03.033

FERNANDES, S. M.; SOUSA, E. J. R. D; LIMA, J. R. D.; PAZ, C. B. D.; SALGADO, B. C. B.; QUEIROZ, D. C. D.; ARAÚJO, R. D. S. Oxidação Fenton do azo corante Ponceau BS usando nanopartículas de óxido de ferro como catalisador. Revista AIDIS de Ingeniería y Ciencias Ambientales. Investigacion, desarrollo y práctica. v. 14, p. 899-916, 2021. https://doi.org/10.22201/iingen.0718378xe.2021.14.2.75487

GAO, J.; LIU, Y.; XIA, X.; WANG, L.; SHAO, L.; CAI, T.; DONG, W. Mechanisms for photo assisted Fenton of synthesized pyrrhotite at neutral pH. Applied Surface Science, v. 463, p. 863-871, 2019. https://doi.org/10.1016/j.apsusc.2018.09.007

GILPAVAS, E.; DOBORSZ-GÓMEZ, I.; GÓMEZ-GARCIA, M. A. Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment. Journal of Environmental Management, v. 191, p. 189-197, 2017. https://doi.org/10.1016/j.jenvman.2017.01.015

HASHEMI-SHAHRAKI, F.; SHAREGHI, B.; FARHADIAN, S. Characterizing the binding affinity and molecular interplay between quinoline yellow and pepsin. Journal of Molecular Liquids, v. 341, p. 117317, 2021. https://doi.org/10.1016/j.molliq.2021.117317

ITO, T.; ADACHI, Y.; YAMANASHI, Y.; SHIMADA, Y. Long–term natural remediation process in textile dye–polluted river sediment driven by bacterial community changes. Water Research, v. 100, p. 458-465, 2016. https://doi.org/10.1016/j.watres.2016.05.050

JANUÁRIO, E. F. D.; VIDOVIX, T. B.; BELUCI, N. C. L.; PAIXÃO, R. M.; SILVA, L. H. B. R.; HOMEM, N. C.; BERGAMASCO, R.; VIEIRA, A. M. S. Advanced graphene oxide-based membranes as a potential alternative for dyes removal: A review. Science of Total Environment, v. 789, p. 147957, 2021. https://doi.org/10.1016/j.scitotenv.2021.147957

JAVAID, R.; QAZI, U. Y. Catalytic oxidation process for the degradation of synthetic dyes: An overview. International Journal of Environmental Research and Public Health, v. 16, n. 11, p. 2066, 2019. https://doi.org/10.3390/ijerph16112066

KARTHIKEYAN, S.; TITUS, A.; GNANAMAMI, A.; MANDAL, A. B.; SEKARAN, G. Treatment of textile wastewater by homogeneous and heterogeneous Fenton oxidation processes. Desalination, v. 281, p. 438-445, 2011. https://doi.org/10.1016/j.desal.2011.08.019

LONG, X.; YANG, Z.; WANG, H.; CHEN, M.; PENG, K.; ZENG, Q.; XU, A. Selective degradation of Orange II with the cobalt(II)–bicarbonate–hydrogen peroxide system. Ind. Eng. Chem. Res. v. 51, p. 11998–12003, 2012. https://doi.org/10.1021/ie3013924

MACÍAS-QUIROGA, I. F.; ROJAS-MÉNDEZ, E. F.; GIRALDO-GÓMEZ, G. I.; SANABRIA-GONZÁLEZ, N. R. Experimental data of a catalytic decolorization of Ponceau 4R dye using the cobalt (II)/NaHCO3/H2O2 system in aqueous solution. Data in Brief, v. 30, p. 105-463, 2020.

https://doi.org/10.1016/j.dib.2020.105463

MARTÍNEZ-HUITLE, C. A.; BRILLAS, E. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Applied Catalysis B: Environmental, v. 87, p. 105-145, 2009. https://doi.org/10.1016/j.apcatb.2008.09.017

MASARBO, R. S.; NIRANJANA, S. R.; MONISHA, T. R.; NAYAKA, A. S.; KAREGOUDAR, T. B. Efficient decolorization and detoxification of sulphonated azo dye Ponceau 4R by using single and mixed bacterial consortia. Biocatalysis and Biotransformation, v. 37, p. 367-376, 2019.

https://doi.org/10.1080/10242422.2019.1568414

MODAK, J. B.; BHOWAL, A.; DATTA, S.; KARMAKAR, S. Continuous decolorization of dye solution by homogeneous Fenton process in a rotating packed bed reactor. International Journal of Environmental Science and Technology, v. 17, p. 1691-1702, 2020.

https://doi.org/10.1007/s13762-019-02548-4

MOSSMAN, A.; DOTTO, G. L.; HOTZA, D.; JAHN, S. L.; FOLETTO, E. L. Preparation of polyethylene-supported zero-valent iron buoyant catalyst and its performance for Ponceau 4R decolorization by photo-Fenton process. Journal of Environmental Chemical Engineering, v. 7, p. 102963, 2019. https://doi.org/10.1016/j.jece.2019.102963

NOGUEIRA, R. F. P.; OLIVEIRA, M. C.; PATERLINI, W. C. Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta, v. 66, p. 86-91, 2005. https://doi.org/10.1016/j.talanta.2004.10.001

PARSONS, S. Advanced Oxidation Processes for Water and Wastewater Treatment. IWA Publishing, 1st ed., 356 p., 2004. ISBN: 978-1843390176.

PAULINO, T. R. S.; ARAÚJO, R. S.; SALGADO, B. C. B. Estudo de oxidação avançada de corantes básicos via reação Fenton (Fe2+/H2O2). Engenharia Sanitária e Ambiental, v. 20, p. 347-352, 2015. https://doi.org/10.1590/S1413-41522015020000111627

REKHATE, C. V.; SRIVASTAVA, J. K. Recent advances in ozone-based advanced oxidation processes for treatment of wastewater - A review. Chemical Engineering Journal Advances, v. 3, p. 100031, 2020. https://doi.org/10.1016/j.ceja.2020.100031

RIVERA, F.L.; RECIO, F. J.; PALOMARES, F. J.; SÁNCHEZ-MARCOS, N.; MENÉNDEZ, N.; MAZARIO, E.; HERRASTI, P. Fenton-like degradation enhancement of Methylene Blue dye with magnetic heating induction. Journal of Electroanalytical Chemistry, v. 879, p. 114773, 2020.

https://doi.org/10.1016/j.jelechem.2020.114773

SAEED, M. O.; AZIZLI, K.; ISA, M. H.; BASHIR, M. J. K. Application of CCD in RSM to obtain optimize treatment of POME using Fenton oxidation process. Journal of Water Process Engineering, v. 8, p. 7-16, 2015. https://doi.org/10.1016/j.jwpe.2014.11.001

SALDANÃ-ROBLES, A.; GUERRA-SÁNCHEZ, R.; MALDONADO-RUBIO, M. I.; PERALTA-HERNÁNDEZ, J. M. Optimization of the operating parameters using RSM for the Fenton oxidation process and adsorption on vegetal carbon of MO solutions. Journal of Industrial and Engineering Chemistry, v. 20, p. 848-857, 2014. https://doi.org/10.1016/j.jiec.2013.06.015

SHARIFPOUR, E.; ARABKHANI, P.; SADEGH, F.; MOUSAVIZADEH, A.; ASFARAM, A. In-situ hydrothermal synthesis of CNT decorated by nano ZnS/CuO for simultaneous removal of acid food dyes from binary water samples. Scientific Reports, v. 12, p. 12381, 2022.

https://doi.org/10.1038/s41598-022-16676-4

SU, C. C.; PUKDEE-ASA, M.; RATANATAMSKUJ, C.; LU, M. C. Effect of operating parameters on decolorization and COD removal of three reactive dyes by Fenton's reagent using fluidized-bed reactor. Desalination, v. 278, p. 211-218, 2011. https://doi.org/10.1016/j.desal.2011.05.022

TAVARES, M. G. R.; SANTOS, D. H. S.; TAVARES, M. G.; DUARTE, J. L. S.; MEILI, L.; PIMENTEL, W. R. O.; TONHOLO, J.; ZANTA, C. L. P. S. Removal of reactive dyes from aqueous solution by Fenton reaction: Kinetic study and phytotoxicity tests. Water, Air, and Soil Pollution, v. 231, p. 1-15, 2020. https://doi.org/10.1007/s11270-020-4465-6

THIAM, A.; BRILLAS, E.; GARRIDO, J. A.; RODRÍGUEZ, R. M.; SIRÉS, I. Routes for the electrochemical degradation of the artificial food azo-colour Ponceau 4R by advanced oxidation processes. Applied Catalysis B: Environmental, v. 180, p. 227-236, 2016.

https://doi.org/10.1016/j.apcatb.2015.06.039

How to Cite
Linhares, H. P. ., Ribeiro, J. A. S. ., Sousa, E. J. R. ., Lima, F. F. de ., Buarque, H. L. de B. ., Eloi, W. M. ., Silva, G. M. M. ., & Araújo, R. dos S. (2023). Removal of acid red 18 dye in aqueous solution by the Fenton process. Águas Subterrâneas, 37(1), e–30203. https://doi.org/10.14295/ras.v37i1.30203