Exploratory analysis of hydraulic conductivity heterogeneity of a phreatic and shallow coastal sedimentary aquifer, Florianópolis, Brazil

Published
2023-08-18
Keywords: Heterogeneidade, Condutividade hidráulica, Análise exploratória. Heterogeneity, Hydraulic conductivity, Exploratory analysis

    Authors

  • Daniel Amgarten Simão Programa de Pós-graduação em Engenharia Ambiental. Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC
  • Cátia Regina Silva de Carvalho Pinto Programa de Pós-graduação em Engenharia Ambiental. Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC

Abstract

Hydraulic conductivity (K) has been attributed as the most significant property controlling flow and transport in aquifers. While its spatial distribution is naturally heterogeneous in geological environments, its homogenization in macroscopic aquifer volumes is still common practice in the mathematical representation of relevant subsurface processes. This study is an exploratory analysis of the hydraulic conductivity characterizations for a phreatic and shallow coastal sedimentary aquifer, traditionally conceptualized as homogeneous, evaluating the variability of this property, the characterization methods (field and laboratory tests) and relationships of K with sediments properties and local geology. The analysis indicated a K variability associated with extensively characterized aquifers that were classified as of low heterogeneity. The variability of K in the field tests indicated a variation between 3 orders of magnitude, and it was associated with the sedimentary facies identified at the characterization points and, therefore, with relevant heterogeneity in the vertical direction. This demonstrates that the three-dimensional structure of aquifers must always be taken into account in the conceptual model of aquifers, mainly for problems of groundwater contamination, even in places traditionally characterized as homogeneous.

References

ALLEN-KING, R. M. et al. Characterizing the heterogeneity and correlation of perchloroethene sorption and hydraulic conductivity using a facies-based approach. Water Resources Research, v. 34, n. 3, p. 385–396, 1998. https://doi.org/10.1029/97WR03496

BIELSCHOWSKY, C. Aplicação e comparação de métodos de campo para estimativa da condutividade hidráulica do solo. 2005. Monografia de Graduação em Geologia - Universidade Federal do Rio de Janeiro, Instituto de Geociências, Rio de Janeiro.

BOHLING, G. C. et al. Geostatistical analysis of centimeter-scale hydraulic conductivity variations at the MADE site. Water Resources Research, v. 48, n. 2, 2012. https://doi.org/10.1029/2011WR010791

BOUWER, H.; RICE, R. C. A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells. Water Resources Research, v. 12, n. 3, p. 423–428, 1976. https://doi.org/10.1029/WR012i003p00423

BUTLER, James J. Hydrogeological Methods for Estimation of Spatial Variations in Hydraulic Conductivity. In: Hydrogeophysics. Dordrecht: Springer Netherlands, 2005. p. 23–58. https://doi.org/10.1007/1-4020-3102-5_2

CORSEUIL, H. X.; SCHNEIDER, M. R. et al. Solução Corretiva baseada no Risco (SCBR): Modelo Matemático de Tomada de Decisão para o Gerenciamento Ambiental de Águas Subterrâneas Contaminadas. In: CONGRESSO BRASILEIRO DE ÁGUAS SUBTERRÂNEAS, 14., 2006, Curitiba. Anais [...]. São Paulo, 2006. https://doi.org/10.1021/es104055q

CORSEUIL, H. X.; MONIER, A. L. et al. BTEX Plume Dynamics Following an Ethanol Blend Release: Geochemical Footprint and Thermodynamic Constraints on Natural Attenuation. Environmental Science & Technology, v. 45, n. 8, p. 3422–3429, 2011.

CUPERTINO, D. F. Caracterização de propriedades do meio poroso em solo arenoso através do permo-porosímetro a gás. 2005. Monografia de Graduação em Geologia - Universidade Federal do Rio de Janeiro, Instituto de Geociências, Rio de Janeiro.

DAGAN, G. Flow and Transport in Porous Formations. Springer-Verlag, 1989. https://doi.org/10.1007/978-3-642-75015-1

DEVLIN, J. F. Groundwater Velocity. Guelph, Ontario: The Groundwater Project, 2020. 64 p.

https://doi.org/10.21083/978-1-77470-000-6

FETTER, C.W.; BOVING, T.; KREAMER, D. Contaminant Hydrogeology. Waveland Press, 2017.

FIORI, A.; DAGAN, G. et al. The plume spreading in the MADE transport experiment: Could it be predicted by stochastic models? Water Resources Research, v. 49, n. 5, p. 2497–2507, 2013. https://doi.org/10.1002/wrcr.20128

FOGG, G. E.; ZHANG, Y. Debates—Stochastic subsurface hydrology from theory to practice: A geologic perspective. Water Resources Research, v. 52, n. 12, p. 9235–9245, 2016. https://doi.org/10.1002/2016WR019699

FREEZE, R. A.; CHERRY, J. A. Groundwater. Prentice-Hall, 1979.

GELHAR, L. W. Stochastic subsurface hydrology. Prentice-Hall, 1993.

GUO, Z. et al. Contaminant transport in heterogeneous aquifers: A critical review of mechanisms and numerical methods of non-Fickian dispersion. Science China Earth Sciences, n. 64, p. 1224–1241, 2021. https://doi.org/10.1007/s11430-020-9755-y

HESS, K. M.; WOLF, S. H.; CELIA, M. A. Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 3. Hydraulic conductivity variability and calculated macrodispersivities. Water Resources Research, v. 28, n. 8, p. 2011–2027, 1992. https://doi.org/10.1029/92WR00668

HVORSLEV, M.J. Time Lag and Soil Permeability in Ground-water Observations. Waterways Experiment Station, Corps of Engineers, U.S. Army, 1951. (Bulletin Waterways Experiment Station U.S.).

KOLTERMANN, C. E.; GORELICK, S. M. Heterogeneity in Sedimentar Deposits: Review of Structure-Imitating, Process-Imitating, and Descriptive Approaches. Water Resources Research, v. 32, n. 9, p. 2617–2658, 1996. https://doi.org/10.1029/96WR00025

LAGE, I. C. Determinação da permeabilidade em diagnósticos geoambientais: a área experimental da Fazenda Ressacada, SC. 2005. Dissertação de Mestrado em Geologia – Universidade Federal do Rio de Janeiro, Rio de Janeiro.

LANGE, W. J. Advective Transport Phenomena to Better Understand Dispersion in Field and Modeling Practice. Groundwater, v. 58, n. 1, p. 46–55, 2020. https://doi.org/10.1111/gwat.12883

LEBLANC, D. R. et al. Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 1. Experimental design and observed tracer movement. Water Resources Research, v. 27, n. 5, p. 895–910, 1991.

https://doi.org/10.1029/91WR00241

MAXWELL, R.; CARLE, S.; TOMPSON, A. Contamination, risk, and heterogeneity: On the effectiveness of aquifer remediation. Environmental Geology, v. 54, p. 1771–1786, jun. 2008. https://doi.org/10.1007/s00254-007-0955-8

MOLZ, F. Advection, Dispersion, and Confusion. Groundwater, v. 53, n. 3, p. 348–353, 2015. https://doi.org/10.1111/gwat.12338

MORETTIN, P. A.; SINGER, J. M. Estatística e ciência de dados. Rio de Janeiro: LTC, 2022. 454 p.

MÜLLER, J. B. Bioestimulação combinada de ferro e sulfatorredução utilizando óxidos de ferro recuperados do tratamento da drenagem ácida de mina e acetato de amônio em águas subterrâneas impactadas com diesel B20. 2017. Tese (Doutorado em Engenharia Ambiental) – Universidade Federal de Santa Catarina, Centro Tecnológico, Florianópolis.

NICHOLS, G. Sedimentology and stratigraphy. Wiley, 2009. 419 p.

NEUMAN, S. P. Generalized scaling of permeabilities: Validation and effect of support scale. Geophysical Research Letters, v. 21, n. 5, p. 349–352, 1994. https://doi.org/10.1029/94GL00308

PAYNE, F.C.; QUINNAN, J.A.; POTTER, S.T. Remediation hydraulics. CRC Press, 2008. https://doi.org/10.1201/9781420006841

RAMA, F. Modelo conceitual da hidrodinâmica do transporte de gasolina e etanol em um aquífero costeiro raso. 2019. Tese (Doutorado em Engenharia Ambiental) – Universidade Federal de Santa Catarina, Centro Tecnológico, Florianópolis.

RAMOS, D. T. et al. Biostimulation of anaerobic BTEX biodegradation under fermentative methanogenic conditions at source-zone groundwater contaminated with a biodiesel blend (B20). Biodegradation, v. 24, p. 333–341, 2013. https://doi.org/10.1007/s10532-012-9589-y

RAZALI, M. N.; YAP, B. Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests. Journal of Statistical Modeling and Analytics, v. 2, jan. 2011.

REHFELDT, K. R.; BOGGS, J. M.; GELHAR, L. W. Field study of dispersion in a heterogeneous aquifer: 3. Geostatistical analysis of hydraulic conductivity. Water Resources Research, v. 28, n. 12, p. 3309–3324, 1992. https://doi.org/10.1029/92WR01758

REN, W. et al. Evaluating the Effects of Multiscale Heterogeneous Sediments on Solute Mixing and Effective Dispersion. Water Resources Research, v. 58, n. 9, 2022.

https://doi.org/10.1029/2021WR031886

ROVEY, C. W.; CHERKAUER, D. S. Scale Dependency of Hydraulic Conductivity Measurements. Groundwater, v. 33, n. 5, p. 769–780, 1995.

https://doi.org/10.1111/j.1745-6584.1995.tb00023.x

SALAMON, P.; FERNÀNDEZ-GARCIA, D.; GÓMEZ-HERNÁNDEZ, J. J. Modeling tracer transport at the MADE site: The importance of heterogeneity. Water Resources Research, v. 43, n. 8, 2007. https://doi.org/10.1029/2006WR005522

SUDICKY, E. A. A natural gradient experiment on solute transport in a sand aquifer: Spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resources Research, v. 22, n. 13, p. 2069–2082, 1986.

https://doi.org/10.1029/WR022i013p02069

SUDICKY, E. A.; ILLMAN, W. A. Lessons Learned from a Suite of CFB Borden Experiments. Groundwater, v. 49, n. 5, p. 630–648, 2011. https://doi.org/10.1111/j.1745-6584.2011.00843.x

ZLOTNIK, V. et al. Support volume and scale effect in hydraulic conductivity: Experimental aspects. In: Theory, modeling, and field investigation in hydrogeology. Geologic Society of America, v. 348, p. 215–231, jan. 2000.

https://doi.org/10.1130/0-8137-2348-5.215

How to Cite
Simão, D. A., & Pinto, C. R. S. de C. . (2023). Exploratory analysis of hydraulic conductivity heterogeneity of a phreatic and shallow coastal sedimentary aquifer, Florianópolis, Brazil. Águas Subterrâneas, 37(3), e–30200. https://doi.org/10.14295/ras.v37i3.30200