Exploratory analysis of fractured aquifers: a case study for aquifer systems in southern Rio Grande do Sul, Brazil

Published
2023-01-29
Keywords: Aquíferos, Hidrogeologia, Python, GeoPandas, Aerogeofísica. Fractured Aquifers, Hydrogeology, Python, GeoPandas

    Authors

  • Mauren Gaspar Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, RS, Brasil
  • Christie Helouise Engelmann de Oliveira Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, RS, Brasil
  • Francisco Manoel Wohnrath Tognoli Universidade Estadual Paulista (UNESP) , Centro de Ciências Naturais Aplicadas (Unespetro), Rio Claro, SP, Brasil.

Abstract

Hydrogeological studies need characterization of the aquifer systems using qualitative and quantitative data such as lithological and hydrogeochemical analysis, specific capacities, flow rate, salinity and pH. This paper presents a hydrogeological assessment of the southern portion of the Sulriograndense Shield (ESRG), covering 39 municipalities in the  Rio Grande do Sul state, southern Brazil. Thus, lineament data extracted from SRTM images, aeromagnetometric data, hydrogeological data from 885 tubular wells and GIS data were integrated for the hydrogeological characterization. The structural evaluation used lineament demarcated after terrain morphology analysis in the SRTM images at the scales of 1:400,000 and 1:250,000. Furthermore, we used structural subdivisions based on aeromagnetometric data. This integrated approach helped to identify the morphostructural correlation with the magnetic characteristics and the specific capacity of the wells. The results indicated the occurrence of three geophysical domains for each aeromagnetic treatment (ASA and 1DV). The PDVD1 domain, based on vertical first derivative processing, was identified as a fault core because it does not coincide with producing wells, following NW-SE and, subordinately, SW-SE trends. The PDVD2 domain presents lineaments less persistent with preferential SW-NE orientation and, subordinately, NW-SE, identified as a damage zone for coinciding with crystalline areas bearing wells of higher specific capacity. These structural results reinforce the ESRG's NE-SW and NW-SE trends, following trends within geophysical domains. For the evaluation and classification of the wells, data from 1,495 tubular wells were processed using Python scripts written in the Jupyter notebook platform (format .ipynb). From the 885 filtered wells, 211 wells intersected with 1:400,000 scale lineaments, and 588 wells intersected with 1:250,000 scale lineaments. Therefore, this study corroborates the efficiency with a 1:250,000 scale for regional studies and demonstrates how a programming language is a powerful tool for hydrogeological studies and assessment.

References

ANA - Agência Nacional de Águas e Saneamento Básico. Monitoramento e eventos críticos. Disponível em: https://www.gov.br/ana/pt-br/assuntos/monitoramento-e-eventos-criticos. Acesso em: 4 dez. 2022.

ADOMBI, Adoubi Vincent De Paul; CHESNAUX, Romain; BOUCHER, Marie-Amélie. Theory-guided machine learning applied to hydrogeology—state of the art, opportunities and future challenges. Hydrogeology Journal, v. 29, n. 8, p. 2671-2683, 2021. ttps://doi.org/10.1007/s10040-021-02403-2

AYER, Joaquim Ernesto Bernardes; GAROFALO, Danilo Fran-cisco Trovo; PEREIRA, Sueli Yoshinaga. Uso de geotecnolo-gias na avaliação da favorabilidade hidrogeológica em aquí-feros fraturados. Águas Subterrâneas, v. 31, n. 3, p. 154-167, 2017. https://doi.org/10.14295/ras.v31i3.28773

BENSE, V. F. et al. Fault zone hydrogeology. Earth-Science Reviews, v. 127, p. 171-192, 2013. https://doi.org/10.1016/j.earscirev.2013.09.008

CARDOSO JR, Marcio et al. Geomorphic expression of shear zones in Southern Brazilian and Uruguayan Shi-elds. Geomorphology, v. 382, p. 107678, 2021. https://doi.org/10.1016/j.geomorph.2021.107678

CHEMALE JR, F.; HARTMANN, L. A.; SILVA, LC da. Stratigra-phy and tectonism of the Brasiliano Cycle in southern Brazil. Communications of the Geological Survey of Nami-bia, v. 10, p. 151-166, 1995.

AYER, J. E. B.; GAROFALO, D. F. T.; PEREIRA, S. Y. Uso de geotecnologias na avaliação da favorabilidade hidrogeológica em aquíferos fraturados. Águas Subterrâneas, v. 31, n. 3, p. 154, 30 maio 2017. https://doi.org/10.14295/ras.v31i3.28773

BENSE, V. F. et al. Fault zone hydrogeology. Earth-Science Reviews, v. 127, p. 171–192, dez. 2013. https://doi.org/10.1016/j.earscirev.2013.09.008

CARDOSO JR., M. et al. Geomorphic expression of shear zones in Southern Brazilian and Uruguayan Shields. Geomorphology, v. 382, p. 107678, jun. 2021. https://doi.org/10.1016/j.geomorph.2021.107678

COOK, P. G.; LAND, C.; OSMOND, G. A guide to regional flow in fractured rock aquifers. [s.l: s.n.].

DA CUNHA MENEZES, A. M. et al. Structure and geometry of the Neoproterozoic Dom Feliciano Belt and Phanerozoic basins, southern Brazil, from magnetotelluric imaging. Journal of South American Earth Sciences, v. 111, n. June, p. 103407, nov. 2021. https://doi.org/10.1016/j.jsames.2021.103407

DA SILVA, R. C. et al. Hydrogeological compartmentalization and connection of the Guarani (GAS) and Serra Geral (SGAS) aquifer systems from a multiscale perspective: A case study in southern Brazil. Brazilian Journal of Geology, v. 51, n. 3, 2021.

https://doi.org/10.1590/2317-4889202120200056

DESSART, R. L. et al. Analysis of the structural compartiment of the crystalline basement aquifer system in the municipality of bagé (Rs) based on the use of lineaments (srtm and magnetic) and hydrogeological data. Aguas Subterraneas, v. 34, n. 1, p. 1–13, 2020. https://doi.org/10.14295/ras.v34i1.29557

EPUH, E. E. et al. An integrated lineament extraction from satellite imagery and gravity anomaly maps for groundwater exploration in the Gongola Basin. Remote Sensing Applications: Society and Environment, v. 20, n. October 2019, p. 100346, 2020. https://doi.org/10.1016/j.rsase.2020.100346

FERNANDES, L. A. D. et al. Evolução tectônica do cinturão dom feliciano no escudo sul-rio-grandense: parte l - uma contribuição a partir do registro geológico. Revista Brasileira de Geociências, v. 25, n. 4, p. 351–374, 1995. https://doi.org/10.25249/0375-7536.1995351374

FOSSEN, H.; CAVALCANTE, G. C. G. Shear zones – A review. Earth-Science Reviews, v. 171, n. January, p. 434–455, 2017. https://doi.org/10.1016/j.earscirev.2017.05.002

HARTMANN, L. A. et al. The impact of the SHRIMP geochronology on understanding the tectonic and metallogenetic evolution fo southern Brazil. 2nd South American Symposium on Isotope Geology, p. 829–844, 2000. https://doi.org/10.1046/j.1440-0952.2000.00815.x

HARTMANN, L. A.; LOPES, W. R.; SAVIAN, J. F. Integrated evaluation of the geology, aerogammaspectrometry and aeromagnetometry of the Sul-Riograndense Shield, Southernmost Brazil. Anais da Academia Brasileira de Ciencias, v. 88, n. 1, p. 75–92, 2016. https://doi.org/10.1590/0001-3765201520140495

BETIOLLO, L. M.: AFRANEO, L.; HARTMANN, J. F. S. The Pomerode dome in the luis alves craton: geophysics, geology, geometry and tectonic evolution. 2019.

MAPURUNGA SARAIVA, R.; DIKSON ARAUJO DA SILVA, C.; DIAS LISBOA, L. H. Locações de poços em ambiente cristalino: da análise estrutural aos dados de eletroresistividade. estudo de caso nos municípios de São Gonçalo Do Amarante E Aratuba, Ceará. Águas Subterrâneas, 2017. https://doi.org/10.14295/ras.v0i0.28788

MARTIN, T.; MEYER, R.; JOBE, Z. Centimeter-Scale Lithology and Facies Prediction in Cored Wells Using Machine Learning. Frontiers in Earth Science, v. 9, n. June, p. 1–18, 2021. https://doi.org/10.3389/feart.2021.659611

MEREMBAYEV, T.; YUNUSSOV, R.; YEDILKHAN, A. Machine learning algorithms for stratigraphy classification on uranium deposits. Procedia Computer Science, v. 150, p. 46–52, 2019. https://doi.org/10.1016/j.procs.2019.02.010

NAGHIBI, S. A.; HASHEMI, H.; PRADHAN, B. APG: A novel python-based ArcGIS toolbox to generate absence-datasets for geospatial studies. Geoscience Frontiers, v. 12, n. 6, p. 101232, 2021. https://doi.org/10.1016/j.gsf.2021.101232

PEREIRA, L.; BARBOSA, M. S. C.; SCUDINO, P. C. B. Magnetometria E Sensoriamento remoto aplicados ao mapeamento regional de lineamentos de fraturas , no domínio do aquífero fissural associado à fm . serra geral , Bacia Do Paraná. In: CONGRESSO BRASILEIRO DE ÁGUAS SUBTERRÂNEAS, 18., 2014. [Anais...]. n. 31, p. 1–16, 2014.

PERLT, J.; HEINERT, M. Kinematic model of the South Icelandic tectonic system. Geophysical Journal International, v. 164, n. 1, p. 168–175, 2006. https://doi.org/10.1111/j.1365-246X.2005.02795.x

PHILIPP, R. P.; PIMENTEL, M. M.; BASEI, M. A. S. The tectonic evolution of the são gabriel terrane, dom feliciano belt, southern brazil: the closure of the charrua ocean. [s.l.] Springer International Publishing, 2018. https://doi.org/10.1007/978-3-319-68920-3_10

PHILIPP, R. P.; PIMENTEL, M. M.; CHEMALE, F. Tectonic evolution of the Dom Feliciano Belt in Southern Brazil: Geological relationships and U-Pb geochronology. Brazilian Journal of Geology, v. 46, n. June, p. 83–104, 2016. https://doi.org/10.1590/2317-4889201620150016

PIRES, C. A. et al. Litho-structural conditioning in the exploration of fractured aquifers: a case study in the Crystalline Basement Aquifer System of Brazil. Hydrogeology Journal, v. 29, n. 4, p. 1657–1678, 25 jun. 2021. https://doi.org/10.1007/s10040-021-02312-4

PORRAS, D. et al. Drone Magnetometry in Mining Research. An Application in the Study of Triassic Cu–Co–Ni Mineralizations in the Estancias Mountain Range, Almería (Spain). Drones, v. 5, n. 4, 2021. https://doi.org/10.3390/drones5040151

RODRIGO FABIANO DA CRUZ, R. F. DA. Levantamento geológico e do potencial mineral de novas fronteiras: projeto Sudeste do Rio Grande do Sul. Porto Alegre: [s.n.].

SAALMANN, K.; HARTMANN, L. A.; REMUS, M. V.D. The assembly of West Gondwana - The view from the Rio de la Plata craton. Geological Society of America, v. 423, n. 01, p. 1–26, 2007. https://doi.org/10.1130/2007.2423(01)

SAALMANN, K.; REMUS, M. V.D.; HARTMANN, L. A. Structural evolution and tectonic setting of the Porongos belt, southern Brazil. Geological Magazine, v. 143, n. 1, p. 59–88, 2006. https://doi.org/10.1017/S0016756805001433

SCHARF, T. et al. AnalyZr: A Python application for zircon grain image segmentation and shape analysis. Computers and Geosciences, v. 162, n. February, p. 105057, 2022. https://doi.org/10.1016/j.cageo.2022.105057

SILVA, G. C. DA; MENEZES, D. B. Caracterização de unidades aquíferas apartir de dados do cadastro de poços de explotação subterrânea. ensaio de aplicação: área urbana de São Carlos-Sp. In: CONGRESSO BRASILEIRO DE ÁGUAS SUBTERRÂNEAS, 19., 2016. [Anais...]. p. 1–13, 2016.

SINGHAL, B. B. S.; GUPTA, R. P. Applied hydrogeology of fractured rocks. Second edition. [s.l: s.n.].

TIRÉN, S. Lineament interpretation Short review and methodology. p. 1–42, 2010.

VINCENT, A.; ADOMBI, D. P. Review : Theory-guided machine learning applied to hydrogeology — state of the art, opportunities and future challenges. p. 2671–2683, 2021. https://doi.org/10.1007/s10040-021-02403-2

How to Cite
Gaspar, M., Oliveira , C. H. E. de, & Tognoli, F. M. W. . (2023). Exploratory analysis of fractured aquifers: a case study for aquifer systems in southern Rio Grande do Sul, Brazil. Águas Subterrâneas, 37(1), e–30188. https://doi.org/10.14295/ras.v37i1.30188