Removal of veterinary oxytetracycline by the H2O2/UV system

Published
2022-04-23
Keywords: Antibiótico, Água contaminada, Processos avançados. Antibiotic, Contaminated water, Advanced processes.

    Authors

  • Salomao de Andrade Pascoal Universidade Estadual da Paraíba (UEPB), Campina Grande, PB
  • Milena D’arc Santos Ferreira Universidade Estadual da Paraíba (UEPB), Campina Grande, PB
  • João Pedro Vital Pereira Universidade Estadual da Paraíba (UEPB), Campina Grande, PB
  • Geralda Gilvania Cavalcante Universidade Estadual da Paraíba (UEPB), Campina Grande, PB
  • Keila Machado de Medeiros Universidade Federal do Recôncavo da Bahia (UFRB), Feira de Santana, BA
  • Carlos Antônio Pereira de Lima Universidade Estadual da Paraíba (UEPB), Campina Grande, PB

Abstract

The use of antibiotics in therapeutic dosage and as feed additives are management strategies to ensure the high productivity of livestock. Veterinary Oxytetracycline (OTC) is an important antibiotic used with your insertion in environment. OTC is a persistent contaminant to conventional water treatments. The present study simulated a veterinary OTC solution used as a food additive in poultry. In actual use, these solutions are made available to animals for watering and are discarded after 24 hours. Thus, the present study aims to evaluate the capacity of OTC removal from veterinary formulation by the H2O2/UV system from tests with different pH values and H2O2 concentrations. A factorial design of the central composite rotational design (DCCR) was used and the main configurations were the operation time of 60 minutes, three UV-C lamps (254 nm) of 15 W each, initial concentration of OTC of 15 mg L-1 and the volume of deionized water of 250 mL (operating in batch mode). A maximum removal of 97% of oxytetracycline was obtained at pH 6,5 and concentration of 150 mg L-1 of H2O2, and a mathematical model with a capacity to explain 94,12% of the variability of the data at a significance level of 5%. It is concluded that the H2O2/UV system has real capacity for degradation of veterinary OTC solution.

References

AHMED, I.; KASRAIAN, K. Pharmaceutical challenges in veteri-nary product development. Advanced Drug Delivery Reviews, v.54, p.871-882, 2002. PII: S0169-409X(02)00074-1

ALMEIDA, A. R.; TACÃO, M.; MACHADO, A. L.; GOLOVKO, O.; ZLABEK, V.; DOMINGUES, I.; HENRIQUES, I. Long-term effects of oxytetracycline exposure in zebrafish: a multi-level perspec-tive. Chemosphere, v. 222, p. 333-344, 2019. https://doi.org/10.1016/j.chemosphere.2019.01.147

ASHFAQ, M.; LI, Y.; REHMAN, M. S. U.; ZUBAIR, M.; MUSTAFA, G.; NAZAR, M. F; YU, C. P.; SUN, Q. Occurrence, spatial variation and risk assessment of pharmaceuticals and personal care products in urban wastewater, canal surface water, and their sediments: A case study of Lahore, Pakistan. Science of the Total Environment, v.688, p.653-663, 2019. https://doi.org/10.1016/j.scitotenv.2019.06.285

BAXENDALE, J. H.; WILSON, J. A. The photolysis of hydrogen peroxide at high light intensities. Transactions of the Faraday Society, v.53, p.344-356, 1957. https://dx.doi.org/10.1039/tf9575300344

BEN, Y.; HU, M.; ZHANG, X.; WU, S.; WONG, M. H.; WANG, M.; ANDREWS, C. B.; ZHENG, C. Efficient detection and assess-ment of human exposure to trace antibiotic residues in drink-ing water. Water Research, v.175, p.1-11, 2020. https://doi.org/10.1016/j.watres.2020.115699

BORGHI, A. A.; PALMA, M. S. A. Tetracycline: production, waste treatment and environmental impact assessment. Brazilian Journal of Pharmaceutical Sciences. v.50, n.1, 2014. http://dx.doi.org/10.1590/S1984-82502011000100003

CARDINAL, K. M.; KIPPER, M.; RIBEIRO, A. M. L. Withdrawal of antibiotic growth promoters from broiler diets: performance indexes and economic impact. Poultry Science, 1v.68, p.6659-6667, 2019. https://dx.doi.org/10.3382/ps/pez536

CHEN, Y.-Y.; MA, T.-L.; YANG, J.; WANG, L.-Q.; LV, J.-M.; REN, C.-J. Aqueous tetracycline degradation by H2O2 alone: removal and transformation pathway. Chemical Engineering Journal, v.307, p.15-23, 2017. http://dx.doi.org/10.1016/j.cej.2016.08.046

CHEN, Y.; XIE, Q.; WAN, J.; YANG, S.; WANG, Y.; FAN, H. Occur-rence and risk assessment of antibiotics in multifunctional reservoirs in Dongguan, China. Environmental Science and Pollution Research, v.27, n.12, p.13565-13574, 2020. https://doi.org/10.1007/s11356-019-07436-5

CHOI, S.; WOOHYUNG, S.; JANG, D.; YOON, Y.; RYU, J.; OH, J.; WOO, J. S.; KIM, Y. M.; LEE, Y. Antibiotics in coastal aquacul-ture Waters: occurrence and elimination efficiency in oxida-tive water treatment process. Journal of Hazardous Materials, v.396, p.1-12, 2020. https://doi.org./10.1016/j.hazmat.2020.122585

CHENG, X.; HOU, H.; LI, R.; ZHENG, C.; LIU, H. Adsorption be-havior of tetracycline on the soil and molecular insight into the effect of dissolved organic matter on the adsorption. Jour-nal of Soils and Sediments, v.20, p.1846-1857, 2020. https://doi.org/10.1007/s11368-019-02553-7

CHOPRA I. Tetracyclines. In: Antibiotic and Chemotherapy, 9 th edition, Chapter 30, p. 344-355, 2010. https://doi.org/10.1016/B978-0-7020-4064-1.00030-0

DA ROCHA, M. P.; DOURADO, P. L. R.; CARDOSO, C. A. L.; CÂN-DIDO, L. S.; PEREIRA, J. G.; OLIVEIRA, K. M. P.; GRISOLIA, A. B. Tools for monitoring aquatic environments to identify anthrop-ic effects. Environmental Monitoring & Assessment, v.190, n.61, p.1-13, 2018. https://doi.org/10.1007/s10661-017-6440-2

DING, H.; WU, Y.; ZHANG, W.; ZHONG, J.; LOU, Q.; YANG, P.; FANG, Y. Occurrence, distribution, and risk assessment of antibiotics in the surface water of Poyang Lake, the largest freshwater lake in China. Chemosphere, v.184, p.137-147, 2017. http://dx.doi.org/10.1016/j.chemosphere.2017.05.148

ESPÍNDOLA, J. C.; CRISTÓVÃO, R. O.; MAYER, D. A.; BOAVENTU-RA, R. A. R.; DIAS, M. M.; LOPES, J. C. B.; VILAR, J. P. Overcom-ing limitations in photochemical UVC/H2O2 systems using a mili-photoreactor (NETmix): oxytetracycline oxidation. Science of the Total Environment, v.660, p.982-992, 2019. https://doi.org/10.1016/j.scitotenv.2019.01.012

GILER-MOLINA, J. M.; ZAMBRANO-INTRIAGO, L. A.; QUIROZ-FERNÁNDEZ, L. S.; NAPOLEÃO, D. C.; VIEIRA, J. S.; OLIVEIRA, N. S.; RODRÍGUEZ-DÍAZ, J. M. Degradation of oxytetracycline in aqueous solutions: application of homogeneous and hetero-geneous advanced oxidative processes. Sustainability, v.12, n.8807, p.1-19, 2020. https://doi.org/10.3390/su12218807

GROS, M.; CATALÁN, N.; MAS-PLA, J.; CELIC, M.; PETROVIC, M.; FARRÉ, M. J. Groundwater antibiotic pollution and its relation-ship with dissolved organic matter: identification and envi-ronmental implications. Environmental Pollution, v.289, n.117927, p.1-9, 2021. https://doi.org/10.1016/j.envpol.2021.117927

GOLDSTEIN, S.; ASCHENGRAU, D.; DIAMANT, Y.; RABANI, J. Photolysis of Aqueous H2O2: Quantum Yield and Applications for Polychromatic UV Actinometry in Photoreactors. Environ-mental Science & Technology. v.41, p.7486–7490, 2007. https://dx.doi.org/10.1021/es071379t

GUPTA, V. K.; ALI, I.; SAINI, V. K. Adsorption of 2,4-D and carbo-furan pesticides using fertilizer and steel industry wastes. Journal of Colloid and Interface Science, v.299, n.2, p.556–563, 2006. https://doi.org/10.1016/j.jcis.2006.02.017

HAN, C. H.; PARK, H. D.; KIM, S. B.; YARGEAU, V.; CHOI, J. W.; LEE, S. H.; PARK, J. A. Oxidation of tetracycline and oxytetracy-cline for the photo-Fenton process: Their transformation prod-ucts and toxicity assessment. Water Research, v.172, p.1-10, 2020a. https://doi.org/10.1016/j.watres.2020.115514

HAN, Q. F.; ZHAO, S.; ZHANG, X. R.; WANG, X. L.; SONG, C.; WANG, S. G. Distribution, combined pollution and risk as-sessment of antibiotics in typical marine aquaculture farms surrounding the yellow sea, North China. Journal Environment International, v.138, p.1-12, 2020b. https://doi.org/10.1016/j.envint.2020.105551

HUSSAIN, S.; NAEEM, M.; CHAUDHRY, M. N. Estimation of residual antibiotics in soil and underground water of areas affected by pharmaceutical wastewater in Lahore. Journal of Water and Technology, v.39, n.1, p.56-60, 2017. https://doi.org/10.3103/S1063455X1701009X

JUNQUEIRA, V. H.; BEZERRA, M. C. S. The ideology of agribusi-ness in basic education. Perspectiva, v.36, n.4, p.1378-1397, 2018. http://dx.doi.org/10.5007/2175-795X.2018v36n4p1378

KACZALA, F.; BLUM, S. E. The occurrence of veterinary phar-maceuticals in the environment: A review. Current Analytical Chemistry, v.12, n.3, p.169-182, 2016. https://doi.org/10.2174/1573411012666151009193108

KHAN, J. A.; HE, X.; KHAN, H. M.; SHAH, N. S.; DIONYSIOU, D. D. Oxidative degradation of atrazine in aqueous solution by UV/H2O2/Fe2+, UV/S2O82-/Fe2+ and UV/HSO5-/Fe2+ processes: a comparative study. Chemical Engineering Journal, v.15, p.376-383, 2013. https://doi.org/10.1016/j.cej.2012.12.055

LI, Y.; FANG, J.; YUAN, X.; CHEN, Y.; YANG, H.; FEI, X. Distribu-tion characteristics and ecological risk assessment of tetra-cyclines pollution in the Weihe river, China. International Journal of Environmental Research and Public Health, v.15, n.9, p.1-11, 2018. https://doi.org/10.3390/ijerph15091803

LIAO, C. H.; GUROL, M. D. Chemical oxidation by photolytic decomposition of

hydrogen peroxide. Environmental Science & Technology, v.29, p.3007-3014, 1995. https://doi.org/10.1021/es00012a018

LIU, Y.; HE, X.; FU, Y.; DIONYSIOS, D. D. Quantitative assess-ment on the contribution of direct photolysis and radical oxidation in photochemical degradation of 4-chlorophenol and oxytetracycline. Environmental Science Pollution Research, v.23, p.14307-14315, 2016a. https://doi.org/10.1007/s11356-016-6561-0

LIU, Y.; HE, X.; FU, Y.; DIONYSIOS, D. D. Degradation kinetics and mechanism of oxytetracycline by hydroxyl radical-based advanced oxidation processes. Chemical Engineering Journal, v.284, p.1317-1327, 2016b. https://dx.doi.org/10.1016/j.cej.2015.09.034

MARKIC, M.; CVETNIC, M.; UKIC, S.; KUSIC, H.; BOLANCA, T.; BOZIC, A. L. Influence of process parameters on the effective-ness of photooxidative treatment of pharmaceuticals. Journal of Environmental Science and Health, Part A v.53, n.4, p.338-351, 2018. https://doi.org/10.1080110934529.2017.1401394

MCCARTHY, B.; APORI, S. O.; GILTRAP, M.; BHAT, A.; CURTIN, J.; TIAN, F. Hospital effluents and wastewater treatment plants: a source of oxytetracycline and antimicrobial-resistant bacteria in seafood. Sustainability, v.13, n.13967, p.1-16, 2021. https://doi.org/10.3390/su132413967

NASSEH, N.; TAGHAVI, L.; BARIKBIN, B.; NASSEN, M. A.; AL-LAHRESANI, A. FeNi3/SiO2 magnetic nanocomposite as an efficient and recyclable heterogeneous Fenton-like catalyst for the oxidation of metronidazole in neutral environments: Ad-sorption and degradation studies. Composites Part B: Engi-neering, v.166, p.328-340, 2019. https://doi.org/10.1016/j.compositesb.2018.11.112

NHUNG, N. T.; CUONG, N. V.; THWAITES, G.; CARRIQUE-MAS, J. Antimicrobial usage and antimicrobial resistance in animal production in southeast Asia: A review. Antibiotics, v.5, n.37, p.1-24, 2016. https://doi.org/10.3390/antibiotics5040037

NOGUEIRA, R. F. P.; OLIVEIRA, M. C.; PATERLINI, W. C. Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta, v.66, p.86-91, 2005. https://doi.org/10.1016/j.talanta.2004.10.001

NOSCHANG, J.P.; DE MORAIS, R.E.; CARPINELLI, N. A.; SCHMIDT, P. I.; DE OLIVEIRA, V. D.; SILVEIRA, R. F.; SILVEIRA, I. D. B. Growth promoters (antibiotics) in swine feeding – Re-view. Revista Electrónica de Veterinária, v.18, n.9, p.1-12, 2017. ISSN 1695-7504

QI, Y.; MEI, Y. Q.; LI, J. Q.; YAO, T. J.; YANG, Y.; JIA, W. J.; TONG, X.; WU, J.; XIN, B. F. Highly efficient microwave-assisted Fenton degradation of metacycline using pine-needle-like CuCo2O4 nanocatalyst. Chemical Engineering Journal, v.373, p.1158-1167. 2019. https://doi.org/10.1016/j.cej.2019.05.097

QUEVEDO, A.; BARROS, É.; ALMEIDA, M. Medicação via água de bebida: conheça mais sobre esse método. A revista do AviSite: produção animal avicultura. n.69, p.12-16, 2013. ISSN 1983-0017.

RAHMAH, A. U.; HARIMURTI, S.; MURUGESAN, T. Experimental investigation on the effect of wastewater matrix on oxytetracy-cline mineralization using UV/H2O2 system. International Journal of Environmental Science and Technology, v.14, p.1225-1233, 2017. https://doi.org/10.1007/s13762-016-1226-6

RAHMAH, A. U.; HARIMURTI, S.; KURNIA, K. A.; OMAR, A. A.; MURUGESAN, T. Oxytetracycline mineralization inside a UV/H2O2 system of advanced oxidation processes: Inorganic by-product. Bulletin of Chemical Reaction Engineering & Ca-talysis, v.16, n.2, p.302-309, 2021. https://doi.org/10.9767/bcrec.16.2.10308.302-309

RUFINO, J. L.; FERNANDES, F. C. B.; RUY, M. S.; PEZZA, H. R.; PEZZA, L. A simple spectrophotometric method for the deter-mination of tetracycline and doxycycline in pharmaceutical formulations using chloramine-T. Revista Eclética Química, v.35, n.4, p.139-145, 2010. https://doi.org/10.1590/S0100-46702010000400018

SANTANA, O. T. O.; LIMA, N. C.; TAVARES, M. The relationship between the behavior of the current liquidity indicator of pub-licly traded agribusiness companies by the variation of eco-nomic indexes in Brazil. Revista Contemporânea de Contabili-dade, v.16, n.41, p.63-92, 2019. https://doi.org/10.5007/2175-8069.2019v16n41p63

SIEDLEWICZ, G.; BIALK-BIELINSKA, A.; BORECKA, M.; WINO-GRADOW, A.; STEPNOWSKI, P.; PAZDRO, K. Presence, concen-trations and risk assessment of selected antibiotic residues in sediments and near-bottom waters collected from the Polish coastal zone in the southern Baltic sea – summary of 3 years of studies. Journal Marine Pollution Bulletin, v.129, p.787-801, 2018. http://dx.doi.org/10.1016/j.marpolbul.2017.10.075

SINGER, R. S.; HOFACRE, C. L. Potential impacts of antibiotic in poultry production. Avian Diseases, v.50, p.161-172, 2006. https://doi.org/10.1637/7569-033106R.1

SPINOSA, H. D.; TÁRRAGA, K. M. Considerações gerais sobre os antimicrobianos. In: Farmacologia aplicada à medicina veteri-nária, Editora Guanabara Koogan, 6ª edição, Capítulo 33, p. 1420, 2017. ISBN 978-85-277-3133-1

STANKOV, V.; STANKOV, M. N.; CVETNIC, M.; BURES, M. S.; UKIC, S.; GRGIC, D. K.; BOZIC, A. L.; KUSIC, H.; BOLANCA, T. Environmental aspects of UV-C-based processes for the treat-ment of oxytetracycline in water. Environmental Pollution, v.277, p.1-11, 2021. https://doi.org/10.1016/j.envpol.2021.116797

TOPAL, M.; ARSLAN TOPAL, E. I. Occurrence and fate of tetra-cycline and degradation products in municipal biological wastewater treatment plant and transport of them in surface water. Environmental Monitoring and Assessment, v.187, p.1-9, 2015. https://doi.org/10.1007/s10661-015-4978-4

VIANA, P.; MEISEL, L.; LOPES, A.; DE JESUS, R.; SARMENTO, G.; DUARTE, S.; SEPODES, B.; FERNANDES, A.; DOS SANTOS, M. M. C.; ALMEIDA, A.; OLIVEIRA, M. C. Identification of antibiotics in surface-groundwater. A tool towards the ecopharmacovigi-lance approach: a Portuguese case-study. Antibiotics, v.10, n.888, p. 1-22, 2021. https://doi.org/10.3390/antibiotics10080888

XIONG, W.; SUN, Y.; ZENG, Z. Antimicrobial use and antimicro-bial resistance in food animals. Environmental Science and Pollution Research, v.25, p.18377-18384, 2018. https://doi.org/10.1007/s11356-018-1852-2

ZHAO-JUN, L.; WEI-NING, Q.; YAO, F.; YUAN-WANG, L.; SHEHATA, E.; JIAN, L. Degradation mechanisms of oxytetracycline in the environment. Journal of Integrative Agriculture, v.18, n.9, p.1953-1960, 2019. https://doi.org/10.1016/S2095-3119(18)62121-5

ZHOU, Y.; FENG, S.; DUAN, X.; ZHENG, W.; SHAO, C.; WU, W.; JIANG, Z.; LAI, W. MnO2/UIO-66 improves the catalysed degra-dation of oxytetracycline under UV/H2O2/PMS system. Journal of Solid State Chemistry, v.300, p.1-14, 2021. https://doi.org/10.1016/j.jssc.2021.122231

WANG, J.; ZHUAN, R. Degradation of antibiotics by advanced oxidation processes: An overview. Science of The Total Envi-ronment, v.701, 2019. https://doi.org/10.1016/j.scitotenv.2019.135023

WANG, Z.; CHEN, Q.; ZHANG, J.; DONG, J.; YAN, H.; CHEN, C.; FENG, R. Characterization and source identification of tetra-cycline antibiotics in the drinking water sources of the lower Yangtze River. Journal of Environmental Management, v.244, p.13-22, 2019. https://doi.org/10.1016/j.jenvman.2019.04.070

How to Cite
Pascoal, S. de A., Ferreira, M. D. S., Pereira, J. P. V. ., Cavalcante, G. G. ., Medeiros, K. M. de, & Lima, C. A. P. de . (2022). Removal of veterinary oxytetracycline by the H2O2/UV system. Águas Subterrâneas, 36(1), e–30106. https://doi.org/10.14295/ras.v36i1.30106