Bioremediator potential of the microalgae Chlorella vulgaris BEIJERINCK in a wastewater composed medium

Published
2022-02-19
Keywords: Dessalinização, Filtro anaeróbio, Biorremediação, DCCR. Microalgae, Wastewater, Bioremediation, CCRD.

    Authors

  • Djalma Queiroga de Assis Neto Universidade Federal de Campina Grande, PPGEGRN/CTRN/UFCG, Campus I, Campina Grande, PB, Brasil
  • Thiago Santos de Almeida Lopes Universidade Federal de Campina Grande, PPGEGRN/CTRN/UFCG, Campus I, Campina Grande, PB, Brasil
  • Whelton Brito dos Santos Universidade Federal de Campina Grande, PPGEGRN/CTRN/UFCG, Campus I, Campina Grande, PB, Brasil
  • Weruska Brasileiro Ferreira Universidade Estadual da Paraíba, DESA/CCT/UEPB, Campus I, Campina Grande, PB, Brasil
  • Vera Lucia Antunes de Lima Universidade Federal de Campina Grande, PPGEGRN/CTRN/UFCG, Campus I, Campina Grande, PB, Brasil

Abstract

The groundwater desalination is, in many locations, the only solution for water supply. However, the reverse osmosis membrane desalination process produces a polluting and difficult-to-treat waste. Similarly, the effluent produced by the treatment of domestic sewage in anaerobic filter also needs a post-treatment to meet the standards for discharge into water bodies. Thus, the bioremediation of wastewater, using microalgae, appears as an option for treating this waste. The objective of this study was to evaluate and optimize the bioremediative potential of the microalgae species Chlorella vulgaris in a medium composed of reverse osmosis desalination wastewater and domestic sewage treatment effluent by anaerobic filter and the standard medium of the species. In the methodology, the experimental design was used by central composite rotational design (CCRD), having as independent variables: pH, photoperiod and effluent concentration. The parameters analyzed were Chemical Oxygen Demand (COD) and Total Phosphorus (TP). Removal rates for the COD variable ranged between 28.73 and 70.73% and for the TP variable the rates were between 52.19 and 100%. The statistical optimization of the models showed a combined theoretical removal of 69.08% for COD and 89,34% TP.

References

AJALA, S. O.; ALEXANDER, M. L. Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for removal of sulfate, nitrate, and phosphate in wastewater. International Journal of Energy and Environmental Engineering, 2019. https://doi.org/10.1007/s40095-019-00333-0

AKBARZADEH, N.; SHARIATI, M. Aluminum remediation from medium by Dunaliella. Ecological Engineering v. 67, p. 76-79, 2014. https://doi.org/10.1016/j.ecoleng.2014.03.014

ANDREOTTI V.; et al. Bioremediation of aquaculture wastewater from Mugil cephalus (Linnaeus, 1758) with different microalgae species. Chemistry and Ecology, v.37, p.750-761, 2017.

https://doi.org/10.1080/02757540.2017.1378351

ANEEL - Agência Nacional de Energia Elétrica. Tabela 3.1: Duração solar do dia, em horas, em diferentes latitudes e períodos do ano. Atlas de Energia Solar. Disponível em: http://www2.aneel.gov.br/aplicacoes/atlas/energia_solar/3_2.htm. 2020. Acesso em: 12 Jun. 2021.

APHA; AWWA; WPCF. Standard Methods for the Examinaton of Water and Wastewater. 22. ed. Washington, D.C.: American Public Health Associaton/American Water Works Associaton/Water Environment Federaton, 2012.

BAETTKER, E. C.; CARVALHO, K. Q.; FREIRE, F. B.; PASSIG, F. H.; MORAIS, J. L. Materiais alternativos como meio suporte de filtros anaeróbios para tratamento de esgoto sanitário sintético. Revista Engenharia Sanitária e Ambiental, v. 23, n. 6, p. 1091-1102, 2018. https://doi.org/10.1590/s1413-41522018170758

BARROS NETO, B.; et al. Como fazer experimentos: pesquisa e desenvolvimento na ciência e na indústria. 3. ed. Campinas: UNICAMP, 2007.

BELTRÁN-ROCHA, C. J.; et al. Biotratamiento de efluentes secundarios municipales utilizando microalgas: Efecto del pH, nutrientes (C, N y P) y enriquecimiento con CO2. Revista de Biología Marina y Oceanografía, v. 52, n. 3, p. 417-427, 2017. https://doi.org/10.4067/S0718-19572017000300001

BINTE SAFIE, S. R.; NG, Y. K.; YAO, L.; LEE, Y. K. Growth bottlenecks of microalga Dunaliella tertiolecta in response to an up-shift in light intensity. European Journal of Phycology, v. 53, n. 4, p. 509–519, 2018.

https://doi.org/10.1080/09670262.2018.1478131

CAVALCANTE, F. L.; ANDRADE NETO, C. O. DE; ARAÚJO, A. L. C.; MELO, H. N. DE S. Eficiência sanitária de filtros anaeróbios avaliada em função da remoção de ovos de vermes e coliformes fecais. Revista AIDIS, v. 3, n. 1, 2010.

ÇELEKLI, A. DÖNMEZ, G. Effect of pH, light intensity, salt and nitrogen concentrations on growth and b-carotene accumulation by a new isolate of Dunaliella sp. World Journal of Microbiology & Biotechnology, v. 22, p. 183-189, 2006. https://doi.org/10.1007/s11274-005-9017-0

CHAUDHARY, R. et al. Kinetic study of nutrients removal from municipal wastewater by Chlorella vulgaris in photobioreactor supplied with CO2-enriched air. Environmental Technology, v. 41, n. 5, p. 617-626, 2020.

https://doi.org/10.1080/09593330.2018.1508250

CHERNICHARO, C. A. DE L.; VAN HAANDEL, A.; AISSE, M. M.; CAVALCANTI, P. F. F. Reatores Anaeróbios de Manta de Lodo. Tratamento de Esgotos Sanitários Por Processo Anaeróbio e Disposição Controlada no Solo, 1999. Rio de Janeiro-RJ: FINEP/PROSAB.

DALIRY, S.; et al. Investigation of optimal condition for Chlorella vulgaris microalgae growth. Global Journal of Environmental Science and Management, 2017.

DARVEHEI, P.; BAHRI, P. A.; MOHEIMANI, N. R. Model development for the growth of microalgae: A review. Renewable and Sustainable Energy Reviews, v. 97, p. 233-258, 2018. https://doi.org/10.1016/j.rser.2018.08.027

DIAS, G.; et al. Biorremediação de efluentes por meio da aplicação de microalgas: uma revisão. Química Nova, 2019. https://doi.org/10.21577/0100-4042.20170393

GHAFFOUR, N.; et al. Renewable energy-driven desalination technologies: A comprehensive review on challenges and potential applications of integrated systems. Desalination, 5. jan. 2015. https://doi.org/10.1016/j.desal.2014.10.024

GOLDMAN, J. C.; RYTHER, J. H. Temperature-influenced species competition in mass cultures of marine phytoplankton. Biotechnology and Bioengineering, v.18, p. 1125-1144, 1976. https://doi.org/10.1002/bit.260180809

GONG, Q.; et al. Effects of light and pH on cell density of Chlorella vulgaria. Energy Procedia, v. 61, p. 2012-2015, 2014. https://doi.org/10.1016/j.egypro.2014.12.064

HARRINGTON, E. C. The desirability function. Industrial Quality Control, p. 494-498, Abril de 1965.

KHALIL, Z. I.; et al. A Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. World Journal of Microbiology and Biotechnology, v. 26, p. 1225–1231, 2010. https://doi.org/10.1007/s11274-009-0292-z

LI, K.; LIU, Q.; FANG, F.; et al. Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresource Technology, v. 291, p. 121934, 2019.

https://doi.org/10.1016/j.biortech.2019.121934

MATOS, A. P.; MOECKE, E. H. S; SANT'ANNA, E. S. The use of desalination concentrate as a potential substrate for microalgae cultivation in Brazil. Algal Research, v. 24, p. 505-508, 2017. https://doi.org/10.1016/j.algal.2016.08.003

MATOS, A. P.; et al. CULTIVATION OF Chlorella vulgaris IN MEDIUM SUPPLEMENTED WITH DESALINATION CONCENTRATE GROWN IN A PILOT-SCALE OPEN RACEWAY. Brazilian Journal of Chemical Engineering, v. 35, n. 4, p. 1183-1192, 2018. https://doi.org/10.1590/0104-6632.20180354s20170338

MAZLAN, N. M.; PESHEV, D.; LIVINGSTON, A. G. Energy consumption for desalination - A comparison of forward osmosis with reverse osmosis, and the potential for perfect membranes. Desalination, v. 377, p. 138–151, 2016. https://doi.org/10.1016/j.desal.2015.08.011

MINISTERIO DEL AMBIENTE. 31 de março de 2003. Norma de calidad ambiental y descarga de efluentes: recurso agua. Texto Unificado de Legislación Ambiental Secundaria del Ministerio del Ambiente. Quito, Ecuador. 2003.

NEVES, A. L. R.; et al. Aspectos socioambientais e qualidade da água de dessalinizadores nas comunidades rurais de Pentecoste-CE. Revista Ambiente e Agua, v. 12, n. 1, p. 124–135, 2017. https://doi.org/10.4136/ambi-agua.1722

NICHOLS, H. W. Growth media freshwater. In: STEIN, J. (Ed.), Handbook of phycological methods: culture methods and growth measurements. Cambridge University Press, p. 7–24, 1973.

PAULA, H. M. de; FERNANDES, C. E. Otimização do tratamento de água cinza a partir do uso combinado de coagulantes químicos. Revista Engenharia Sanitária e Ambiental, v. 23, n. 5, 2018. https://doi.org/10.1590/s1413-41522018169155

RIBARDO, C.; ALLEN, T. T. An alternative desirability function for achieving “six sigma” quality. Quality and Reliability Engineering International, v. 19, n. 3, p. 227–240, 2003. https://doi.org/10.1002/qre.523

RIO GRANDE DO SUL. Conselho Estadual do Meio Ambiente – CONSEMA. Resolução nº 355 de 13 de julho de 2017. Diário Oficial do Estado, Rio Grande do Sul, 2017.

SALAMA, E. S.; KURADE, M. B.; ABOU-SHANAB, R. A. I.; et al. Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renewable and Sustainable Energy Reviews, 2017.

https://doi.org/10.1016/j.rser.2017.05.091

SANTOS, R. R. Estudo de diferentes condições de cultivo de chlorella vulgaris visando o aumento da produtividade em biomassa e lipídioS. Dissertação (Mestrado) - Programa de Pós-Graduação em Tecnologia de Processos Químicos e Bioquímicos, Universidade Federal do Rio de Janeiro - UFRJ. 2013.

SARMENTO, J. D. A.; et al. Qualidade e conservação da alface cultivada com rejeito da dessalinização. Revista Caatinga, v. 27, n. 3, p. 90–97, 2014.

SHENVI, S. S.; ISLOOR, A. M.; ISMAIL, A. F. A review on RO membrane technology: Developments and challenges. Desalination, 2015. https://doi.org/10.1016/j.desal.2014.12.042

SHIRAZI, S. A.; et al. Simultaneous biomass production and water desalination concentrate treatment by using microalgae. Desalination and Water Treatment, v. 135, p. 101–107, 2018. https://doi.org/10.5004/dwt.2018.23163

SCHELLENBERG, T.; SUBRAMANIAN, V.; GANESHAN, G.; TOMPKINS, D.; PRADEEP, R. Wastewater Discharge Standards in the Evolving Context of Urban Sustainability–The Case of India. Frontiers in Environmental Science, v. 8. Abril de 2020. https://doi.org/10.3389/fenvs.2020.00030

STATSOFT, I. STATISTICA (Data Analysis Software System), www.statsoft.com, versão 7, 2011.

SUBASHINI, P. S.; RAJIV, P. An Investigation of Textile Wastewater Treatment using Chlorella vulgaris. Oriental Journal Of Chemistry, v. 34, n. 5, p.2517-2524, 2018. https://doi.org/10.13005/ojc/340538

SUGANYA, T.; et al. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable and Sustainable Energy Reviews, 2016.

https://doi.org/10.1016/j.rser.2015.11.026

SURWADE, S. P.; et al. Water desalination using nanoporous single-layer graphene. Nature Nanotechnology, v. 10, n. 5, p. 459–464, 2015. https://doi.org/10.1038/nnano.2015.37

SUTHERLAND, D. L.; HOWARD-WILLIAMS, C.; TURNBULL, M. H.; BROADY, P. A.; CRAGGS, R. J. The effects of CO2 addition along a pH gradient on wastewater microalgal photo-physiology, biomass production and nutrient removal. Water Research, v. 70, p. 9–26, 2015.

https://doi.org/10.1016/j.watres.2014.10.064

VO, H. N. P.; et al. Microalgae for saline wastewater treat-ment: a critical review. Critical Reviews in Environmental Science and Technology, 2019.

https://doi.org/10.1080/10643389.2019.1656510

ZHOU, G. et al. Simultaneous removal of inorganic and or-ganic compounds in wastewater by freshwater green micro-algae. Environmental Science: Processes and Impacts, v. 16, 2014. https://doi.org/10.1039/C4EM00094C

ZHOU, W.; et al. Nutrients removal and recovery from saline wastewater by Spirulina platensis. Bioresource Technology, v. 245, p. 10–17, 2017. https://doi.org/10.1016/j.biortech.2017.08.160

ZIGANSHINA, E. E.; BULYNINA, S. S.; ZIGANSHIN, A. M. As-sessment of Chlorella sorokiniana Growth in Anaerobic Di-gester Effluent. Plants, v. 10, p. 478, 2021.

https://doi.org/10.3390/plants10030478

How to Cite
Assis Neto, D. Q. de ., Lopes, T. S. de A. ., Santos, W. B. dos ., Ferreira, W. B. ., & Lima, V. L. A. de . (2022). Bioremediator potential of the microalgae Chlorella vulgaris BEIJERINCK in a wastewater composed medium. Águas Subterrâneas, 35(3), e–30095. https://doi.org/10.14295/ras.v35i3.30095