Evaluation of the Serra Geral Aquifer System with a double porosity model based on the analysis of pumping tests

Published
2021-05-02
Keywords: Fractured aquifers, Hydrodynamics parameters, Pumping tests, Classic models, Double-porosity models. Aquíferos fraturados, Parâmetros Hidrodinâmicos, Testes de Interferência, Modelos clássicos, Modelos de dupla porosidade.

    Authors

  • Bianca Regina Severgnini Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brasil.
  • Taison Anderson Bortolin Universidade de Caxias do Sul (UCS), Caxias do Sul, RS, Brasil.
  • Pedro Antônio Roehe Reginato Universidade Federal do Rio Grande do Sul(UFRGS), Porto Alegre, RS.

Abstract

The Serra Geral Aquifer System (SGAS) is composed of fractured aquifers associated with the structures existing in volcanic rocks, being a heterogeneous and anisotropic system. For this reason, the methods of Cooper & Jacob and Theis are not usually effective in translating as discontinuities in the medium and can lead to uncertain assessments. The use of other methods, such as those of Warren & Root and Moench relative to double porosity aquifers, may represent an alternative for the evaluation of this type of aquifer. Within this context, the objective of the study was to determine the efficiency of the use of double porosity models in the evaluation of fractured aquifers, comparing with the classic models, through the analysis of the adjustments of theoretical data to the data of drawdown obtained in the field. The available data come from pumping tests with observation wells carried out in a small hydrographic basin in the city of Caxias do Sul - RS, in which there is the occurrence of SGAS. Adjustments using double porosity methods revealed that they present good suitability in adjusting the drawdown curves and can be used to analyze hydrodynamic parameters of fractured aquifers, such as the SGAS. The Moench method stands out, the errors were 90% lower than the previous ones by the classic methods, showing that the latter are less effective in evaluating the hydrodynamic behavior of water in heterogeneous and anisotropic media.

References

AGARWAL, Ram G.. A new method to account for producing time effects when drawdown type curves are used to analyze pressure buildup and other test data. SPE Annual Technical Conference And Exhibition, Dallas, v. 9289, n. 1, p. 1-20, set. 1980. Society ofpetroleumengineers. http://dx.doi.org/10.2118/9289-ms. Disponível em: https://blasingame.engr.tamu.edu/z_zcourse_archive/p648_19a/p648_19a_lectures_(working_lectures)/20190130_p648_19a_lec_06_spe_009289_%5bpdf%5d.pdf. Acesso em: 05 jun. 2020.

AHMED, Tarek; MCKINNEY, Paul D. Well Testing Analysis. Advanced Reservoir Engineering, [s.l.]: Elsevier, v. 1, n. 1, p. 1-147, jan. 2005. http://dx.doi.org/10.1016/b978-075067733-2/50003-4. Disponível em: https://www.sciencedirect.com/science/article/pii/B9780750677332500034. Acesso em: 05 jun. 2020.

AQUIFERTEST: Pumping & slug test analisys, interpretation & visualization software. Versão Pro 7.0. Waterloo, Canada: Water-loo Hydrogeology Co., 2017.

BEAR, Jacob. Hydraulic of Groundwater. 1 ed. Mineola: Dover Publications Inc., 1979. Disponível em: https://www.scribd.com/read/271567645/Hydraulics-of-Groundwater. Acesso em: 27 mar. 2020.

BORTOLIN, Taison Anderson et al. Hidrogeologia e hidroquímica dos aquíferos fraturados associados às rochas vulcânicas ácidas do município de Carlos Barbosa (RS). Ambiente&Água: An Inter-disciplinary Journal of Applied Science, Taubaté, v. 9, n. 1, p. 55-67, mar. 2014. Trimestral. Instituto de Pesquisas Ambientais em Bacias Hidrograficas (IPABHi). https://doi.org/10.4136/ambi-agua.1270. Disponível em: https://www.redalyc.org/pdf/928/92830124007.pdf. Acesso em: 23 mar. 2020.

CHO, H. Jean; FIACCO, R. Joseph; DALY, Matthew H. Pumping test analysis in a fractured crystalline bedrock. In: Proceedings of 2004 US EPA/National Ground Water Association Fractured Rock Conference: State of the Science and Measuring Successin Remediation. 2004. p. 161-172.

CLASS FINANCIAL ANALYST. Sum of squares: a statistical tool that is used to identify the dispersion of data. 2020. Disponível em: https://corporatefinanceinstitute.com/resources/knowledge/other/sum-of-squares/. Acesso em: 28 maio 2020.

COMPANHIA DE PESQUISA DE RECURSOS MINERAIS. Execução de testes de bombeamento em poços tubulares: Manual prático de orientação. [S. l.]: CPRM, 1998. Disponível em: http://dspace.cprm.gov.br/jspui/bitstream/doc/16635/1/Testes_Bombeamento_Pocos_Tubulares.pdf. Acesso em: 21 mai. 2020.

CONGRESSO BRASILEIRO DE ÁGUAS SUBTERRÂNEAS, 12. 2002, Florianópolis. Comportamento do Aquífero Fissural na Microba-cia do Córrego da Cachoeira, Município de Vinhedo (SP). [São Paulo]: ABAS, 2002.Disponível em:https://aguassubterraneas.abas.org/asubterraneas/article/view/22065. ACESSO EM: 31 MAR. 2020.

COOPER JR, H. H.; JACOB, Charles Edward. A generalized graphical method for evaluating formation constants and summarizing well‐field history. Eos, Transactions American Geophysical Union, v. 27, n. 4, p. 526-534, 1946. Disponível em: https://www.nrc.gov/docs/ML1429/ML14290A600.pdf. Acesso em: 13 dez. 2020. https://doi.org/10.1029/TR027i004p00526

CRUZ, Fábio et al. Análise derivativa de testes de bombeamento em aquíferos fissurais no município de Jundiaí/SP. Revista do Instituto Geológico, São Paulo, v. 40, n. 3, p. 13-26, 31 dez. 2019. http://dx.doi.org/10.33958/revig.v40i3.673. Disponível em: http://www.ppegeo.igc.usp.br/index.php/rig/article/view/13535 . Acesso em: 15 abr. 2020.

DUTRA, Tuane de Oliveira. Avaliação da explotação de poços tubulares, no Sistema Aquífero Serra Geral, por sistema de monitoramento automatizado. 2016. Dissertação (Mestrado) - Programa de Pós-graduação em Recursos Hídricos e Saneamen-to Ambiental, Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2016. Disponível em: https://lume.ufrgs.br/handle/10183/143909. Acesso em: 23 mar. 2020.

FEITOSA, Fernando A. C. et al. Hidrogeologia: conceitos e aplicações. Rio de Janeiro: CPRM, 2008.

FELLER, Moshe et al. Aquífero Guarani: manual de teste de bombeamento. [S. l.: s. n.], 2009. Disponível em: https://www.mma.gov.br/publicacoes/agua/category/42-recursos-hidricos.html?download=879:manual-de-teste-de-bombeamento . Acessoem: 21 maio 2020.

FERROUD, Anouck; RAFINI, Silvain; CHESNAUX, Romain. Us

ing flow dimension sequences to interpret non-uniform aquifers with constant-rate pumping-tests: a review. Journal of Hy-

drology X, v. 2, n. 1, p. 1-25, jan. 2019. Mensal. http://dx.doi.org/10.1016/j.hydroa.2018.100003. Disponível em: https://www.sciencedirect.com/science/article/pii/S2589915518300038. Acesso em: 03 jun. 2020.

FIALHO, A.; CHAMBEL, A.; ALMEIDA, C. Caracterização hidráulica de aquíferos fracturados por modelos de porosidade dupla no concelho de Evora. In: CONGRESSO DA ÁGUA. [Anais...], Lisboa, 1990. Disponível em: https://www.researchgate.net/publication/303919195_CARACTERIZA-CAO_HIDRAULICA_DE_AQUIFEROS_FRACTURADOS_POR_MODELOS_DE_POROSIDADE_DUPLA_NO_CONCELHO_DE_EVORa Acesso em: 15 nov. 2020.

FOREST GIS. Download GIS. Forestgis geodatabase. [S. l.], [2017]. Arquivo GIS/Shapefile. Disponível em: http://forest-gis.com/download-de-shapefiles/. Acesso em: 19 maio 2020.

FRENZEL, Matheus Gorniski. Caracterização hidrogeológica do sistema aquífero serra geral (sasg) na região de garibaldi, RS. 2017. TCC (Graduação) - Curso de Geologia, Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2017. Disponível em: https://lume.ufrgs.br/handle/10183/172320 . Acesso em: 23 mar. 2020.

GOOGLE EARTH PRO. Versão 7.3.3.7699. Mountain View, Califór-nia: Google LLC, Alphabet Inc., 2020.

KUANG, Xingxing et al. A review of specific storage in aquifers. Journal of Hydrology, [s.l.]: ELSEVIER, v. 581, p. 1-20, fev. 2020. Mensal. http://dx.doi.org/10.1016/j.jhydrol.2019.124383. Dispo-nível em: https://www.sciencedirect.com/science/article/pii/S0022169419311187 . Acesso em: 22 abr. 2020.

LIN, Lixiang; LIN, Haili; XU, Yongxin. Characterisation of fracture network and groundwater preferential flow path in the Table Mountain Group (TMG) sandstones, South Africa. Water SA, [S.l.]: Academy of Science of South Africa, v. 40, n. 2, p. 263-272, 27 mar. 2014. Trimestral. http://dx.doi.org/10.4314/wsa.v40i2.8 . Disponível em: https://www.ajol.info/index.php/wsa/article/view/102219. Acesso em: 31 mar. 2020.

MOENCH, Allen F. Double-porosity models for a fissured groundwater resevoir with fracture skin. Water Resources Rese-arch, v. 20, n. 7, 1984. https://doi.org/10.1029/WR020i007p00831.

MONTANHEIRO, Filipe et al. Testes de bombeamento como re-quisitos para elaboração de modelos hidrogeológicos conceitu-ais: estudo de caso no Aquífero Serra Geral. Águas Subterrâneas, mar. 2017. http://dx.doi.org/10.14295/ras.v0i0.28845. Disponí-vel em: https://aguassubterraneas.abas.org/asubterraneas/article/view/28845. Acesso em: 23 mar. 2020.

PAULA, Thiago de; CAMPOS, José. Aquíferos com fluxos controla-dos simultaneamente por porosidade intergranular e planar: aplicação a rochas metassedimentares do Alto Paraguai, MT. Revista Brasileira de Recursos Hídricos, v. 21, n. 1, p. 11-24, 25 abr. 2016. http://dx.doi.org/10.21168/rbrh.v21n1.p11-24. Dispo-nível em: https://www.scielo.br/scielo.php?pid=S2318-03312016000100011&script=sci_arttext&tlng=pt . Acesso em: 03 jun. 2020.

PEREIRA, Maria Rosário; ALMEIDA, Carlos. Interpretação de ensaios de caudal de aquíferos fracturados em Trás-os-Montes Oriental (Portugal) por modelos de porosidade dupla e por méto-dos clássicos. Hydrogeology Of Hard Rocks, p. 15-29, 1997. Disponível em: https://www.researchgate.net/publication/272825567_Interpretacao_de_ensaios_de_caudal_de_aquiferos_fracturados_em_Tras-os-Mon-tes_Oriental_Portugal_por_modelos_de_porosidade_dupla_e_por_metodos_classicos. Acesso em: 01 jun. 2020.

REGINATO, Pedro Antônio Roehe; STRIEDER, Adelir José. Caracterização estrutural dos aquíferos fraturados da Formação Serra Geral na região nordeste do estado do Rio Grande Do Sul. Revista Brasileira de Geociências, São Paulo: [s. n.], 2006. Disponível em: http://ppegeo.igc.usp.br/index.php/rbg/article/view/9349 . Acesso em: 23 mar. 2020.

SEN, Zekai.Practical and applied hydrogeology.1 ed. Istanbul, Turquia: Elsevier, 2015. Disponível em: https://www.scribd.com/read/282658904/Practical-and-Applied-Hydrogeology# . Acesso em: 09 jun. 2020.

SUN, Kerang. Formulating surrogate pumping test data sets to assess aquifer hydraulic conductivity. Journal of Hydrology X, [S.l.]: ELSEVIER, v. 1, p. 1-5, dez. 2018. Mensal. http://dx.doi.org/10.1016/j.hydroa.2018.100004. Disponível em: https://www.sciencedirect.com/science/article/pii/S258991551830004X. Acesso em: 22 abr. 2020.

TANG, Yiqunet al. Groundwater Engineering.1 ed. Shanghai, China: SPRINGER, 2016. https://doi.org/10.1007/978-981-10-0669-2_1Disponível em: https://www.scribd.com/document/353853043/Groundwater-Engineering-Springer-Verlag-Berlin-Heidelberg-2016 . Acesso em: 09 jun. 2020.

THEIS, Charles V. The relation between the lowering of the pie-zometric surface and the rate and duration of discharge of a well using ground‐water storage. Eos, Transactions American Ge-ophysical Union, v. 16, n. 2, p. 519-524, 1935. https://doi.org/10.1029/TR016i002p00519. Disponível em: https://water.usgs.gov/ogw/pubs/Theis-1935.pdf . Acesso em: 13 dez. 2020.

WARREN, J. E.; ROOT, P. J. The behavior of naturally fractured reservoirs. Society of Petroleum Engineers Journal, Pittsburgh: [s. n.], p. 245-255, set. 1963. https://doi.org/10.2118/426-PA. Disponível em: https://www.onepetro.org/download/journal-paper/SPE-426-PA?id=journal-paper%2FSPE-426-Pa. Acesso em: 08 jun. 2020.

WATERLOO HYDROGELOGY. AquiferTest Pro 7.0: Pumping & Slug Test Analisys, Interpretation & Visualization Software: User’s Manual. Waterloo, Canada: Waterloo Hydrogeology, 2017.

WILLMANN, M. et al. On the meaning of the transmissivity values obtained from recovery tests. Hydrogeology Journal, [S.L.], v. 15, n. 5, p. 833-842, 1 fev. 2007. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10040-006-0147-8. Disponível em: https://www.researchgate.net/publication/226185223_On_the_Mea-ning_of_the_Transmissivity_Values_Obtained_from_Recovery_Tests. Acesso em: 15 nov. 2020.

How to Cite
Severgnini, B. R., Bortolin, T. A., & Reginato, P. A. R. (2021). Evaluation of the Serra Geral Aquifer System with a double porosity model based on the analysis of pumping tests . Águas Subterrâneas, 35(1), 103–119. https://doi.org/10.14295/ras.v35i1.30010