Use of hydrogeophysical data and numerical models as an alternative to optimize well locations in an unconfined aquifer

Published
2021-03-03
Keywords: Aquífero Barreiras, Falhamentos Neógenos, Hidrogeofísica, Espessura saturada, Modelos numéricos Barreiras Aquifer, Neogene faults, Hydrogeophysics, Saturated thickness, Numerical model

    Authors

  • Rafaela da Silva Alves Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brasil. https://orcid.org/0000-0002-9879-1757
  • Leandson Roberto Fernandes de Lucena Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brasil. https://orcid.org/0000-0002-7713-861X

Abstract

Aquifers compartmentalized by faults are subject to several alterations, among which the variation of saturated thicknesses and flow patterns. The Barreiras Aquifer, located in the eastern part of the State of Rio Grande do Norte, is structurally compartmentalized by Neogene faults. This aquifer has a battery of 12 tubular wells installed in 2011, which capture about 750 m³/h destined to the water supply of several municipalities. In this context, this article addresses the optimization of additional well locations through the alternative use of hydrogeophysical data and numerical models, within a structurally compartmentalized aquifer. The methodology used 1D inverse geoelectric models, a correlation between lithological profiles of wells and hydrogeophysical cross-sections, aimed at deepening the characterization of the structural compartmentalization of the aquifer. In addition, the study performed a saturated thickness map to guide the numerical simulations performed in MODFLOW. The saturated thickness map indicates that in the western region exhibits the smallest values of saturated thickness, between 30 and 40 m. On the other hand, there are isolines from 70 to a maximum of 90 m saturated thickness in the northeast area. Numerical simulations, in turn, indicated that relative grabens areas are the most favorable for future drilling. These areas have the highest saturated thickness, and, thus, being able to indicate sectors with highest exploitation flows available.

References

ALVES, R. S.; MELO, J. G.; SILVA, C. T. X. L.; OLIVEIRA, C. C. C.; Recursos Hídricos Subterrâneos da Região de Parnamirim, RN: uso das águas e potencialidades. Revista Águas Subter-râneas, v. 30, p. 37-52, 2016. https://doi.org/10.14295/ ras.v30i1.28486

ANA – AGÊNCIA NACIONAL DAS ÁGUAS. Ministério do Meio Ambiente. Estudos Hidrogeológicos para a orientação do Manejo das Águas Subterrâneas da Região Metropolitana de Natal. V. 2 – Avaliação da Urbanização e de outras Ativida-des Antrópicas nas Águas Subterrâneas, 2012.

ANDERSON, M. P.; WOESSNER, W. W. Applied groundwater modeling: simulation of flow and advective transport. Aca-demic Press Inc.,1992.

ARAÚJO, V.; REYES-PERES, Y.; LIMA, R.; PELOSI, A.; MENE-ZES, L.; CÓRDOBA, V.; LIMA-FILHO, F. Fácies e sistema depo-sicional da formação barreiras na região da Barreira do In-ferno, Litoral Oriental do Rio Grande do Norte, Geologia USP-Série Cientifica, v. 6, n. 2, p. 43-49, 2006. https://doi.org/10.5327/ S1519-874X2006000300006

BALL, L. B.; GE, S.; CAINE, J. S.; REVIL, A.; JARDANI, A. Con-straining fault-zone hydrogeology through integrated hydro-logical and geoelectrical analysis. Hydrogeology J. v. 18, p. 1057-1067, 2010. https://doi.org/10.1007/s10040-010-0587-z

BALSAMO, F.; STORTI, F. Grain size and permeability evolu-tion of soft-sediment extensional sub-seismic and seismic fault zones in high-porosity sediments from theCrotone basin, southern Apennines, Italy, Mar. Pet. Geol. v. 27, p. 822-837, 2010. https://doi.org/10.1016/j.marpetgeo.2009.10.016

BALSAMO, F.; STORTI, F.; SALVINI, F.; SILVA, A. T.; LIMA, C. Structural and petrophysical evolution of extensional fault zones in poorly lithified low-porosity sandstones of the Bar-reiras Formation, NE Brazil. Journal of Structural Geology, v. 32, p. 1806–1826, 2010. https://doi.org/10.1016/ j.jsg.2009.10.010

BALSAMO, F.; BEZERRA, F. H. R.; VIEIRA, M. M.; STORTI, F. Structural control on the formation of iron-oxide concretions and Liesegang bands in faulted, poorly lithified Cenozoic sandstones of the Paraíba Basin, Brazil. GSA Bulletin, v. 125, n. 5-6, p. 913 931, 2013. https://doi.org/10.1130/B30686.1

BARRETO, A. M. F.; BEZERRA, F. H. R.; SUGUIO, K; TATUME, S. H.; YEE, M.; PAIVA, R. P.; MUNITA, C. S. Late pleistocene ma-rine terrace deposits in northeastern Brazil: sea-level change and tectonic implications, Palaeo, v. 179, p. 57-69, 2002. https://doi.org/10.1016/S0031-0182(01)00408-4

BENSE, V. F.; PERSON, M. Faults as conduit–barrier systems to fluid flow in siliciclastic sedimentary aquifers. Water Resources, v. 42, W0542, 2006. https://doi.org/10.1029/ 2005WR004480

BEZERRA, F. H. R. Neotectonics in Northeastern Brazil. PhD Thesis, University of London, Inglaterra, 1998

BEZERRA, F. H. R.; AMARO, V. E.; VITA-FINZI, C.; SAADI, A. Pliocene-quaternary fault control of sedimentation and coastal plain morphology in NE Brazil. Journal of South American Earth Sciences, v. 14, p. 61-75, 2001. https://doi.org/10.1016/ S0895-9811(01)00009-8

BEZERRA, F. H. R.; ROSSETTI, D. F.; OLIVEIRA, R. G.; MEDEI-ROS, W. E.; BRITO NEVES, B. B.; BALSAMO, F., NOGUEIRA, F. C. C.; DANTAS, E. L.; ANDRADES FILHO, C.; GÓES, A. M. Neo-tectonic reactivation of shear zones and implications for faulting style and geometry in the continental margin of NE Brazil. Tectonophysics, v. 14, p. 78-90, 2014. https://doi.org/10.1016/ j.tecto.2013.12.021

BOBACHEV, A. A.; MODIN, I. N.; SHEVNIN, V. A. IPI2Win v. 2.1, IPI_RES2, IPI_RES3, User’s Guide. Geoscan-M Ltd., Moscou, Rússia. 25p, 2000.

DOBRIN M. B.; SAVIT, C. H. Introduction to Geophysical Pro-specting. 4th Edition, McGraw Hill, New York, 1998.

FEITOSA, F. A. C.; MANOEL FILHO, J.; FEITOSA, E. C.; DEME-TRIO, J. G. A. Hidrogeologia: conceitos e aplicações. 3 ed. rev. e ampl. – Rio de Janeiro, CPRM: LABHID, 812 p, 2008.

FERNANDES, A. J.; RUDOLPH, D. L. The influence of Cenozoic tectonics on the groundwater-production capacity of frac-tured zones: a case study in Sao Paulo, Brazil. Hydrogeology J. v. 9, p. 151-167, 2001. https://doi.org/10.1007/ s100400000103

JOURDE, H.; FLODIN, E. A.; AYDIN, A.; DURLOFSKY, L. J.; WEN,X. H. Computing permeability of fault zones in eolian sandstone from outcrop measurements. AAPG Bulletin, v. 86, p. 1187-1200, 2002. https://doi.org/10.1306/61EEDC4C-173E-11D7-8645000102C1865D

KIRSCH, R. Groundwater Geophysics, a tool for hydrogeology. Berlin: Springer, 2006. 493 p, 2006. https://doi.org/ 10.1007/3-540-29387-6

KOEFOED, O. Geosounding Principles. V. 1: Resistivity Sounding Measurements. Elsevier Science. 290 p. 1979.

LIMA, M. G.; DANTAS, E. P.; MEDEIROS, V. C. Programa Geo-logia do Brasil-PGB. São José de Mipibu. Folhas SB.25-Y-A-II e SB.25-Y-A-III. Estados do Rio Grande do Norte e Paraíba. Carta Geológica. Recife: CPRM, 1 mapa colorido, 100,0 x 71,0 cm. Escala 1:100.000. 2014. Disponível em: http://geosgb.cprm.gov.br/downloads/ .

LUCENA, L. R. F. Implicação da compartimentação estrutural no Aquífero Barreiras na área da bacia do Rio Pirangi-RN. Tese (Doutorado), Universidade Federal do Paraná, Brasil, 2005

LUCENA, L. R. F.; DA SILVA, L. R. D.; VIEIRA, M. M.; CARVALHO, B. M.; XAVIER JÚNIOR, M. M. Estimating hydraulic parame-ters of Açu-Brazil aquifer using the computer analysis of micrographs. Journal of Hydrology, v. 535, p. 61-70, 2016.

https://doi.org/10.1016/j.jhydrol.2016.01.025

LUCENA, L. R. F.; MEDEIROS, W. E.; OLIVEIRA JR, J. G.; QUEI-ROZ, M. A. The potential of the Barreiras Aquifer in the lower course of the Doce River, Rio Grande do Norte State, North-east Brazil – Integration of hydrogeological and geophysical data. Brazilian Journal Geophysics. V. 31, n. 1, p. 43-57, 2013. https://doi.org/10.22564/rbgf.v31i1.245

MELO, J. G.; ALVES, R. S.; SILVA, J. G. Estimativa da recarga das águas subterrâneas do Sistema Aquífero Barreiras na bacia do Rio Pirangi, RN. Revista Águas Subterrâneas, v. 2, n. 28, p. 68-81, 2014. https://doi.org/10.14295/ ras.v28i2.27428

NOGUEIRA, F. C. C.; BEZERRA, F. H. R.; CASTRO, D. L. Defor-mação rúptil em depósitos da formação Barreiras na porção leste da Bacia Potiguar. Geologia USP-Série CientÍfica, v. 6, n. 2, p. 51-59, 2006. https://doi.org/10.5327/S1519-874X2006000300007

NOGUEIRA, F. C. C.; BEZERRA, F. H. R.; FUCK, R. A. Quaternary fault kinematics and chronology in intraplate northeastern Brazil. J. Geodyn. v. 49, p. 79–91, 2010. https://doi.org/ 10.1016/j.jog.2009.11.002

NUNES, L. M. G.; LUCENA, L. R. F.; NASCIMENTO SILVA, C. C. Reserve evaluation of a fault-conditioned aquifer: the Bar-reiras Aquifer in the coastal region of NE Brazil. Brazilian Journal of Geology, v. 50, n. 1, e20180127, 2020. https://doi.org/10.1590/2317-4889202020180127

OLIVEIRA, J. N. Ferramenta de gestão de águas subterrâneas para a cidade de São José do Rio Preto, SP. Thesis (PHD) - Universidade de São Paulo, Brasil, 2002.

ORELLANA, E. Prospecion geoeletrica en corriente continua. Ed. Paraninfo, Madrid. 523 p, 1972.

ROSSETTI, D. F.; BEZERRA, F. H. R.; DOMINGUEZ, J. M. L. Late Oligocene – Miocene transgressions along the equato-rial and eastern margins of Brazil. Earth-Science Reviews, v. 123, p. 87–112, 2013. https://doi.org/10.1016/j.earscirev.2013.04.005

ROSSETTI, D. F.; BEZERRA, F. H. R.; GÓES, A. M.; BRITO NEVES, B. B. Sediment deformation in Miocene and post-Miocene strata, Northeastern Brazil: Evidence for paleo-seismicity in a passive margin. Sedimentary Geology, v. 235, n. 3-4, p. 172-187, 2011. https://doi.org/10.1016/j.sedgeo.2010.02.005

SEMARH - SECRETARIA DE MEIO AMBIENTE E RECURSOS HÍDRICOS. Estudo Hidrodinâmico com Modelagem Numérica para Definição das Condições de Explotação. Projeto Execu-tivo das Subadutoras para Suprimento do Reservatório de Reunião dos Poços da Área Boa Cica para Reforço do Supri-mento da Adutora Monsenhor Expedito. TECHNE Engenhei-ros Consultores Ltda./SEMARH, 2012.

SERHID - SECRETARIA DO ESTADO DE RECURSOS HÍDRICOS. Caracterização Hidrogeológicados Aquífero. Plano Estadual De Recursos Hídricos Relatório HE-1358-R11-0798, Hidro-service/SERHID, 1998.

SILVA, L. R. D.; LUCENA, L. R. F.; VIEIRA, M. M.; NASCIMENTO, A. F. Estimativa de parâmetros hidráulicos do Aquífero Bar-reiras-RN a partir de análise computacional de imagens de lâminas delgadas. Águas Subterrâneas, v. 28, n. 2, p. 14-27, 2014. https://doi.org/10.14295/ras.v28i2.27873

SOUZA, I. V. F.; LUCENA, L. R. F.; BEZERRA, F. H. R.; DINIZFIL-HO, J. B. Use of hydrogeophysical data to determine the role of faults in the geometry of the Barreiras Aquifer, Brazil. BJGEO, v. 49, n. 2, e20170141, 2019. https://doi.org/ 10.1590/2317-4889201920170141

TELFORD, W. M.; GELDART, L. P.; SHERIFF, R. E. Resistivity Methods. In: Applied Geophysics, 2nd Edition, Cambridge Univ. Press, Cambridge, UK, 353-358, 1990. https://doi.org/10.1017/CBO9781139167932

WILLIAMS, R. T.; GOODWIN, L. B.; MOZLEY, P. S.; BEARD, B.L.; JOHNSON, C. M. Tectonic controls on fault zone flow pathways in the Rio Grande rift, New Mexico, USA. Geology, 43, n. 8, p. 723–726, 2015. https://doi.org/10.1130/G36799.1 https://doi.org/10.1130/G36799.1

How to Cite
Alves, R. da S., & Lucena, L. R. F. de. (2021). Use of hydrogeophysical data and numerical models as an alternative to optimize well locations in an unconfined aquifer. Águas Subterrâneas, 35(1), 51–64. https://doi.org/10.14295/ras.v35i1.29987