Determination of the retardation factor of uranine in quaternary sediments of the São Paulo aquifer

Published
2021-04-17
Keywords: Traçador fluorescente, Uranina, Fator de retardamento. Fluorescent tracer, Uranine, Retardation factor.

Abstract

The application of fluorescent substances as hydrogeological tracers may provide relevant information about subsurface water dynamics. For a better in situ control in the application of tracers, it is relevant to define the chemical and physical behavior of these substances in soils and sediments through bench laboratory experiments in order to predict their behavior during the injection into the aquifer. The objective of this work was to quantify the adsorption and the retardation factor of the fluorescence tracer uranine in quaternary sediments of the upper portion of the São Paulo aquifer. The water/soil distribution coefficients for uranine were obtained by means of batch-tests assays. The experiments consisted in mixing three different soils (organic, clayey and coarse) with uranine solutions in five initial concentrations (5, 10, 50, 100 and 150 μg / L). The fluorescence measurements of the liquid phase were performed through a laboratory fluorometer. The calculated values of the distribution coefficient and retardation factor for the coarse soil were, respectively: 2,60x10-3 L/g ± 0,22x10-3 and 1,51 ± 0,13 (deionized water), and 1,80x10-3 L/g ± 0,12x10-3 and 1,35 ± 0,09 (aquifer water). For organic and clayey soils, the apparent fluorescence generated by the suspended particles in the uranine solutions overlapped the real fluorescence of the tracer, preventing the distribution coefficient and the retardation factor from being calculated. In a porous medium with a high content of organic matter and clay minerals, uranine exhibits high susceptibility to sorption phenomena. However, its use is indicated for the measurement of hydraulic properties in quartz-rich aquifers, since in this sediments the uranine presented a low retardation factor.

References

BORK, M.; LANGE, J.; GRAF-ROSENFELLNER, M.; LANG, F. Controls of fluorescent tracer retention by soils and sed-iments. Hydrology and Earth System Sciences, 24, p. 977-989, 2020. https://doi.org/10.5194/hess-24-977-2020

BOTTRELL, S. H.; THORNTON, S. F.; SPENCE, M. J.; ALL-SHORN, S.; SPENCE, K. H. Assessment of the use of fluo-rescent tracers in a contaminated Chalk aquifer. Quarter-ly Journal of Engineering Geology and Hydrogeology, v. 43, n. 2, p. 195–206, 2010.

https://doi.org/10.1144/1470-9236/08-020

CAO, V.; SCHAFFER, M.; TAHERDANGKOO, R.; LICHA, T. Solute Reactive Tracers for Hydrogeological Applica-tions: A Short Review and Future Prospects. Water. v. 12, n. 3, p. 653, 2020.

https://doi.org/10.3390/w12030653

DIVINE, C.E.; MCDONNELL, J.J. The future of applied trac-ers in hydrogeology. Hydrogeology Journal, 13, p. 255-258, 2005. https://doi.org/10.1007/s10040-004-0416-3

FERNANDES, A.J.; PERROTTA, M.M.; SALVADOR, E.D.; AZEVEDO, S.G.; GIMENEZ FILHO, A.; PAULON, N. Potencial dos aquíferos fraturados do Estado de São Paulo: condi-cionantes geológicos. Revista Águas Subterrâneas. v. 21, p. 63-84, 2007. https://doi.org/10.14295/ras.v21i1.16168

FIELD, M.S.; WILHELM, R.G.; QUINLAN, J.F.; ALEY, T.J. An assessment of the potential adverse properties of fluo-rescent tracer dyes used for groundwater tracing. Envi-ron. Monit. Assess, v. 38, p. 75-97, 1995. https://doi.org/10.1007/BF00547128

GOMBERT, P.; BIAUDET, H.; DE SEZE, R.; PANDARD, P.; CARRÉ, J. Toxicity of fluorescent tracers and their degra-dation byproducts. International Journal of Speleology. V. 46, p. 1, p. 23-31, 2017. https://doi.org/10.5038/1827-806X.46.1.1995

HASUI, Y.; CARNEIRO, C.D.R.; COIMBRA, A.M. The Ribeira Folded Belt. Revista Brasileira de Geociências, v. 5, n. 4, p. 257-266, 1975. https://doi.org/10.25249/0375-7536.1975257266

INSTITUTO DE PESQUISAS TECNOLÓGICAS DO ESTADO DE SÃO PAULO – IPT. Investigação detalhada, avaliação de risco à saúde humana e plano de intervenção – área da UTM-Jaguaré, no bairro Jaguaré, São Paulo-SP. 2017.

JANASI, V.A.; ULBRICH, H.H.G.J. Late Proterozoic granitoid magmatism in the state of São Paulo, southeastern Brazil. Precambrian Research, v. 51, n. 1, p. 351- 374, 1991.https://doi.org/10.1016/0301-9268(91)90108-M

JULIANI, C. Geologia, petrogênese e aspectos metalo-genéticos dos grupos Serra do Itaberaba e São Roque na região das Serras do Itaberaba e da Pedra Branca, NE da Cidade de São Paulo, SP. Tese (Doutorado) - Instituto de Geociências, Universidade de São Paulo, 1993.

KASS, W. Geohydrologische markierungstechnik. Ge-bruder Bornstraeger. Berlin/ Stuttgart, 1998. 581 p.

LEIBUNDGUT, C.; MALOSZEWSKI, P.; KÜLLS, C. Tracers in Hydrology. John Wiley e Sons, Ltd. 2009. https://doi.org/10.1002/9780470747148

LEIBUNDGUT, C.; SEIBERT, J. Tracer Hydrology Volume 2: the science of hydrology. Elsevier Science. p. 215-236, 2011. https://doi.org/10.1016/B978-0-444-53199-5.00036-1

PONSIN, V.; CHABLAIS, A.; DUMONT, J.; RADAKOVITCH, O.; E HÖHENER, P. 222 Rn as Natural Tracer for LNAPL Re-covery in a Crude Oil-Contaminated Aquifer. Groundwa-ter Monitoring e Remediation, v. 35, n. 2, p. 30–38, 2015. https://doi.org/10.1111/gwmr.12091

RIBEIRO, C.B.M. Sistema de alerta ambiental fundamen-tado em estudo teórico-experimental de transporte e dispersão de poluentes solúveis em cursos d’água. Tese (Doutorado) - Universidade Federal de Viçosa, Minas Gerais, Brasil, 2007.

RICCOMINI, C. O Rift continental do sudeste do Brasil. Tese (Doutorado) - Instituto de Geociências, Universida-de de São Paulo, São Paulo, Brasil. 1990.

RICCOMINI, C.; SANT’ANNA, L.G.; FERRARI, A.L. Evolução geológica do rift continental do sudeste do Brasil. In: Geologia do continente Sul-Americano: evolução da obra de Fernando Flávio Marques de Almeida. p. 383–405, 2004.

ROCHA, G.A. Mapa de águas subterrâneas do Estado de São Paulo. Escala 1:1.000.000. Nota explicativa. São Paulo. DAEE-Departamento de Águas e Energia Elétrica; IG- Instituto Geológico; IPT-Instituto de Pesquisas Tecno-lógicas; CPRM-Serviço Geológico do Brasil, 2005.

RODRIGUEZ, S.K. Geologia urbana da região metropoli-tana de São Paulo. Tese (Doutorado) - Instituto de Geo-ciências, Universidade de São Paulo, São Paulo, Brasil, 1998.

SABATINI, D. A.; AUSTIN, T. Characteristics of rhodamine WT and fluorescein as adsorbing ground-water tracers. Groundwater, v. 29, n. 3, p. 341–349, 1991. https://doi.org/10.1111/j.1745-584.1991.tb00524.x

SILVA, L.L.; DONNICI, C.L.; AYALA, J.D.; FREITAS, C.H.; MO-REIRA, R.M.; PINTO, A.M.F. Traçadores: o uso de agentes químicos para estudos hidrológicos, ambientais, petro-químicos e biológicos. Química Nova. v. 32, n. 6, p. 1576-1585, 2009. https://doi.org/10.1590/S0100-40422009000600042

SMART, P.L.; LAIDLAW, I.M.S. An evaluation of some fluo-rescent dyes for water tracing. Water Resources Rese-arch, v. 13, p. 15–32, 1977. https://doi.org/10.1029/WR013i001p00015

SUHOGUSOFF, A. V.; HIRATA, R.; FERRARI L. C. K. M. Ad-sorção do traçador fluorescente uranina em sedimentos quaternários da Bacia de São Paulo. Revista Brasileira de Geociências, v. 35, p. 551-558, 2005. https://doi.org/10.25249/0375-536.200537551558

TAKIYA, H. Estudo da sedimentação Neogênico-Quaternário no município de São Paulo: caracterização dos depósitos e suas implicações na geologia urbana. Tese (Doutorado) - Instituto de Geociências, Universida-de de São Paulo, São Paulo, Brasil, 1997.

TRUDGILL, S.T. Soil water dye tracing with special refer-ence to the use of rhodamine WT, lissamine FF, and amino G acid. Hydrological Processes. 1, 149-170, 1987. https://doi.org/10.1002/hyp.3360010204

TURNER DESIGNS. TD-700. Laboratory Fluorometer Operating Manual. 2002. Disponível em: http://docs.turnerdesigns.com/t2/doc/manuals/7000-998.pdf. Acesso em: 16 jan. 2021.

WILSON JR, J. F.; COBB, E. D.; KILPATRICK, F. A. Tech-niques of water-resourses investigations of the United States Geological Survey. Fluorometric Procedures for Dye Tracing. Book 3 – Applications of Hydraulics. U. S. Geological Survey. 34 p, 1986.

ZHENG, C. MT3D: a modular three–dimensional transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. The United States Environmental Protection Agency. Ada, Oklahoma.163p, 1990.

How to Cite
Ferreira, O. B., Suhogusoff, A. V., & Tavares, T. L. dos S. (2021). Determination of the retardation factor of uranine in quaternary sediments of the São Paulo aquifer. Águas Subterrâneas, 35(1), 65–77. https://doi.org/10.14295/ras.v35i1.29951