

ÁGUAS SUBTERRÂNEA

Artigos

Uso de imagens do projeto PE3D para nivelamento de poços a serem usados em confecção de mapas potenciométricos

Use of imagens from the PE3D project for leveling wells to be used in making potentiometric maps

Gisely Maria Silva1; José Geilson Alves Demetrio1

¹Universidade Federal de Pernambuco (UFPE), Recife, PE

giselymaria.silva@gmail.com, geilsonad@yahoo.com.br

Palavras-chave:	Resumo				
Mapa potenciométrico. DGPS. PE3D. Nivelamento.	Para confecção de mapas potenciométricos é necessário dispor das cotas do terreno a fim de obter o valor das cargas hidráulicas, porém, a obtenção dessas cotas por meio de levantamentos topográficos nem sempre é tão rápida e fácil. O uso de imagens de satélite para esse fim é frequente. O objetivo desse trabalho é avaliar a efetividade do uso de imagens do projeto Pernambuco Tridimensional (PE3D) para construção de mapas potenciométricos. O projeto PE3D trata-se de um recobrimento aerofotogramétrico de todo o estado de Pernambuco com alta precisão. Para atestar esse propósito foram feitos levantamentos topográficos utilizando o Differential Global Positioning System (DGPS), que for nece precisão até milimétrica. Esses levantamentos foram feitos em duas áreas diferentes, uma delas localizada na				
Keywords:	Bacia Sedimentar de Carnaubeira da Penha (PE) e outra na Bacia Sedimentar de Cedro (PE), somando 32 pontos. A partir desse levantamento as maiores diferenças entre as cotas obtidas por meio do DGPS e as cotas obtidas pelas imagens do PE3D, em termos absolutos, foi de 0,625 m, enquanto a menor diferença foi 0,007 m, sendo então a média 0,211 m. Também foram comparados os resultados do GPS de navegação, pois as coordenadas (X,Y) utilizadas no caso anterior foram adquiridas pelo GPS, e este não é utilizado nos trabalhos de campo habituais. A maior diferença entre as coordenadas obtidas pelo GPS comum e o DGPS foi de 4,724 m, enquanto a menor diferença foi de 0,246 m, sendo então a média 1,780 m. Essas diferenças, portanto, não são suficientes para que a cota obtida pelo GPS comum apre- sente erros que mudem a forma do mapa potenciométrico. Conclui-se também que o uso de imagens do projeto PE3D é recomendado para estudos tanto de caráter regional, quanto para estudos detalhados.				
Potentiometric maps.					
DGPS.	Abstract				
PE3D.					
Leveling.	The satellite images are often used to obtain terrain quotes, which contribute to the production of potentiometric maps since traditional topographic survey takes time and are expensive. The aim of this paper is to evaluate the effectiveness				
Revisado por pares. Recebido em: 13/05/2019. Aprovado em: 13/04/2020.	of the imaging from the Pernambuco Tridimensional project (PE3D) focusing on generating potentiometric maps. The PE3D project consists of a high precision airborne cover from the Pernambuco State. In order to attest this purpose, topographic surveys were carried out using the Differential Global Positional System (DGPS), which provide millimetric precision. Such surveys were performed in two distinct areas giving in 32 points. The results showed that the major differences between the quote obtained by DGPS and the PE3D images, in absolute terms, were 0.625 m whereas the minor difference was 0.007 m with an average of 0.211 m. Navigation GPS results were also compared and the principal difference between the navigation GPS coordinates and the DGPS was 4.724 m while the smallest difference was 0.246 m with an average of 1.780 m. These differences were not enough to show that the quote obtained by GPS displayed errors in the shapes of the potentiometric maps. It is also concluded that imaging from the PE3D project is recommended for regional and detailed studies.				
	D01: http://dv.doi.org/10.14/295/coc.v2/ii1.20551				

1.INTRODUÇÃO

O nivelamento topográfico consiste em uma etapa importante para confecção de mapas potenciométricos, uma vez que nos fornece a cota do terreno necessária para o cálculo das cargas hidráulicas. Existem diferentes formas de obter os dados de cota, porém uma das mais usadas atualmente é o DGPS (*Differential Global Positioning System*), que fornece precisão na faixa de milímetros. Entretanto, esta técnica mais elaborada requer trabalho de campo, equipamentos de alto custo e pessoas especializadas. Estudos anteriores comparando a utilização de imagens SRTM (*Shuttle Radar Topography Mission*) com o DGPS mostraram que os erros na obtenção das cotas são inferiores a 5 metros (Demetrio *et. al*, 2006). Löbler *et. al* (2014) utiliza dados de SRTM comparados ao banco de dados do Sistema de Informações de Águas Subterrâneas (SIA-GAS/CPRM) e após aplicado o Coeficiente de Correlação por Postos de Spearman, obteve-se o valor 0,887 para um nível de significância de 99%. Isso indica que os valores foram próximos de 1, concluindo que as imagens SRTM podem servir de instrumento em estudos nas áreas em que há carência de informações. Para o estado de Pernambuco, uma opção acessível atualmente é a obtenção da cota do terreno por meio do Programa Pernambuco Tridimensional (PE3D), que encontradisponível gratuitamente se na plataforma www.pe3d.pe.gov.br. Esse projeto consiste em um recobrimento aerofotogramétrico de todo território pernambucano e geração de ortofotos na escala de 1:5.000, perfilamento a laser com precisão altimétrica melhor que 25 cm e geração de Modelos Digitais de Terreno (MDT), Modelos Digitais de Elevação (MDE) e imagens de Intensidade Hipsométrica. O presente trabalho tem como objetivo a obtenção das cotas de um conjunto de poços nas bacias sedimentares de Cedro e Carnaubeira da Penha, por meio do DGPS e das imagens do PE3D, a fim de analisar a possibilidade do uso das imagens do PE3D para a elaboração de mapas potenciométricos, reduzindo assim os custos e o tempo necessário para obtenção das cotas do terreno com precisão satisfatória.

2. ÁREA DE ESTUDO

A área de estudo encontra-se no âmbito das bacias interiores de Pernambuco, estando localizadas nas Bacias sedimentares de Cedro e Carnaubeira da Penha (Figura 1). Geologicamente, estão inseridas na Província Borborema, na Subprovíncia Central ou Zona Transversal.

As duas áreas estão localizadas nos municípios de Cedro e Carnaubeira da Penha, cerca de 563,0 e 501,0 km do Recife (PE), respectivamente. Foram selecionados 20 poços da bacia de Cedro e 12 poços da bacia de Carnaubeira da Penha (Figuras 2 e 3), totalizando 32 poços que serviram como pontos para realizar o nivelamento.

Figura 2 - Distribuição dos poços na Bacia de Cedro

3. MATERIAL E MÉTODOS

Para realizar o nivelamento dos poços foram utilizados dois receptores GNSS (Sistemas Globais de Satélite de Navegação) L1 PROMARK 3 MAGELLAN, para tanto, é necessário que uma das antenas (um receptor) permaneça fixa em uma base que possua coordenadas e cotas conhecidas. No Brasil, existe uma rede de estações que serve como referência para esses levantamentos, denominada Rede Brasileira de Monitoramento Contínuo (RBMC), esses dados encontram-se disponíveis diariamente em forma de relatórios no site <www.ibge.gov.br>. A RBMC é um conjunto de estações geodésicas, pertencentes ao Instituto Brasileiro de Geografia e Estatística (IBGE), com receptores GNSS que fornecem relatórios diários contendo informações necessárias para realização dos levantamentos topográficos. A RBMC é hoje a estrutura geodésica de referência mais precisa do país, cujas informações atendem tanto a comunidade científica quanto a prática, e dessa forma, a crescente utilização das técnicas de posicionamento baseadas nos GNSS, o seu papel torna-se cada vez mais relevante (COSTA et al., 2008). Estando a estação base localizada nas proximidades da região de interesse, há uma forte correlação entre os erros calculados na estação base e os erros da estação móvel (MONICO, 2000). Segundo este autor, o DGPS funciona a partir de um receptor estacionário (uma estação da RBMC) rastreando todos os satélites possíveis. Os erros calculados na posição da estação base são semelhantes aos erros da estação móvel, guando essas duas estações estão próximas. No presente trabalho, a RBMC mais próxima é a base do Crato (Identificação: CRAT) que está localizada a cerca de 58,0 km do município de Cedro. Para o município de Carnaubeira da Penha a estação mais próxima é Afogados da Ingazeira (Identificação: PEAF) que está a cerca de 142,0 km do município. Como é interessante que a base fique próxima ao conjunto de pontos a ser nivelados, foram selecionados dois pontos (poços) para servirem de base auxiliar, um em cada bacia sedimentar. A quantidade de bases depende do equipamento utilizado e os pontos auxiliares são utilizados para a mudança de base. É um processo comum nesses tipos de levantamentos, pois, transferindo a base para a proximidade do local de trabalho diminui o tempo necessário para o processamento. Para determinar a cota e as coordenadas dessas bases, foi montado um receptor em cada ponto coletando informações na mesma frequência das estações RBMC durante nove horas. Os dados dos receptores e das estações da RBMC foram processados no programa GNSS Solutions para obtenção das coordenadas das bases auxiliares, as quais serviram de base fixa para o levantamento topográfico dos demais pontos.

Vale ressaltar que a altitude determinada utilizando um receptor GNSS não está relacionada ao nível do mar, mas a um elipsoide de referência. O modelo geoidal é caracterizado por uma superfície equipotencial do campo de gravidade da Terra, que coincide com o nível médio dos mares. Para estimar o geoide é estabelecido um elipsoide de referência com características matemáticas definidas. A partir disso é possível estimar a superfície geoidal prolongada através dos continentes. Portanto, torna-se necessário conhecer a diferença entre as superfícies geoidal e elipsoidal para que a altitude acima do nível médio do mar possa ser obtida, ou seja, a altitude ortométrica (Figura 4).

No Brasil, o IBGE, através da Coordenação de Geodésia (CGED) e Escola Politécnica da Universidade de São Paulo (EPUSP) criou o sistema MAPGEO2015, que nos permite obter a ondulação geoidal em um ponto ou conjunto de pontos, desde que as coordenadas estejam em SIRGAS2000 e as latitudes estejam entre 6 °N e 35 °S e as longitudes entre 75 °W e 30 °W, abrangendo o território brasileiro.

Para converter a altitude elipsoidal (h), obtida através de re

ceptores GNSS, em altitude ortométrica (H), é necessário utilizar o valor da altura geoidal (N) fornecida pelo MAPGEO, ou outro modelo de ondulação geoidal, utilizando a expressão:

$$H = h - N$$

Assim, como para transferência de base, todos os pontos registrados foram processados no software GNSS Solutions com Sistema de Referência Espacial SIRGAS 2000/UTM zona 24S. Após o processamento e obtenção da altura do elipsoide, a correção para a altura ortométrica foi feita a partir do modelo geoidal brasileiro MAPGE02015. As imagens do PE3D foram fornecidas como raster no formato TIFF, importadas no *software* ArcMap e extraídos os valores da altitude.

4. RESULTADOS E DISCUSSÕES

Após o processamento dos dados do DGPS foi obtido o valor -9,81 m de correção do elipsoide (altura geoidal) para os pontos de Cedro e -9,49 m para os pontos de Carnaubeira da Penha. Esses valores foram obtidos tomando como referência as bases auxiliares, porém como a distância entre os pontos é pequena, as variações no geoide também são pequenas, nesse caso, a maior variação da altura geoidal de um determinado ponto para a base foi de 4 mm, dessa forma foi utilizado o valor da base para corrigir os demais pontos. O resultado encontra-se demonstrado na Tabela 1.

As cotas retiradas das imagens do PE3D estão apresentadas na Tabela 2, juntamente com a comparação com as cotas ortométricas obtidas pelo DGPS.

 Tabela 1 – Resultado do nivelamento por DGPS. A nomenclatura Bce refere-se aos poços de Cedro, enquanto a nomenclatura Bcp refere-se aos poços de Carnaubeira da Penha

Poço	Zona	UTM Este(m)	UTM Norte(m)	Elipsoide (m)	Ondulação (m)	Cota ortométrica (m)
Bce001	24M	473356,381	9145099,240	532,363	-9,810	542,173
Bce006	24M	473797,016	9144772,134	532,212	-9,810	542,022
Bce012	24M	476376,897	9146375,765	521,370	-9,810	531,180
Bce016	24M	477338,049	9146695,785	501,063	-9,810	510,873
Bce018	24M	479113,810	9148056,257	508,445	-9,810	518,255
Bce023	24M	481307,122	9147273,597	519,733	-9,810	529,543
Bce025	24M	485286,515	9142953,756	491,097	-9,810	500,907
Bce027	24M	476671,224	9146431,158	522,085	-9,810	531,895
Bce044	24M	478209,480	9145611,009	503,284	-9,810	513,094
Bce056	24M	479663,601	9147291,987	512,175	-9,810	521,985
Bce060	24M	480523,076	9141355,912	492,766	-9,810	502,576
Bce062	24M	480899,896	9140688,702	492,620	-9,810	502,430
Bce065*	24M	481875,609	9141511,163	480,646	-9,810	490,456
Bce068	24M	482599,520	9146045,709	495,550	-9,810	505,360
Bce089	24M	471590,936	9143149,766	527,765	-9,810	537,575
Bce106	24M	483380,567	9136035,186	477,341	-9,810	487,151
Bce111	24M	483746,828	9136158,926	468,405	-9,810	478,215
Bce113	24M	483686,307	9136633,681	473,517	-9,810	483,327
Bce117	24M	474976,904	9145847,192	509,146	-9,810	518,956
Bce122	24M	481363,463	9144433,257	494,432	-9,810	504,242
Bcp006	24L	535096,662	9083891,590	426,792	-9,490	436,282
Bcp007	24L	534618,596	9083785,874	429,531	-9,490	439,021
Bcp018	24L	534712,486	9084597,410	449,361	-9,490	458,851
Bcp020**	24L	536752,104	9084778,482	441,588	-9,490	451,078
Bcp024	24L	536818,546	9083900,680	424,925	-9,490	434,415
Bcp032	24L	534148,739	9084069,599	444,926	-9,490	454,416
Bcp034	24L	534014,710	9084689,305	451,743	-9,490	461,233
Bcp044	24L	539082,962	9081494,359	432,977	-9,490	442,467
Bcp045	24L	541110,233	9080834,497	403,646	-9,490	413,136
Bcp048	24L	538302,988	9083657,151	410,481	-9,490	419,971
Bcp054	24L	541488,462	9078236,698	412,203	-9,490	421,693
Bcp059	24L	538240,763	9087254,018	445,569	-9,490	455,059

(*) = Ponto que serviu como base auxiliar para Cedro; (**) = Ponto que serviu como base auxiliar para Carnaubeira da Penha.

	Coordenadas	Geodésicas(m)	Cota Cota Diferenç		
Poço	UTM(E)	UTM(N)	Ortométrica	PE3D	entre cotas
Bce001	473356,381	9145099,240	542,173	541,934	-0,239
Bce006	473797,016	9144772,134	542,022	541,598	-0,424
Bce012	476376,897	9146375,765	531,180	531,266	0,086
Bce016	477338,049	9146695,785	510,873	510,746	-0,127
Bce018	479113,810	9148056,257	518,255	518,082	-0,173
Bce023	481307,122	9147273,597	529,543	529,702	0,159
Bce025	485286,515	9142953,756	500,907	501,485	0,578
Bce027	476671,224	9146431,158	531,895	531,644	-0,251
Bce044	478209,480	9145611,009	513,094	512,469	-0,625
Bce056	479663,601	9147291,987	521,985	521,795	-0,190
Bce060	480523,076	9141355,912	502,576	502,859	0,283
Bce062	480899,896	9140688,702	502,430	502,711	0,281
Bce065	481875,609	9141511,163	490,456	490,438	-0,018
Bce068	482599,520	9146045,709	505,360	505,297	-0,063
Bce089	471590,936	9143149,766	537,575	537,615	0,040
Bce106	483380,567	9136035,186	487,151	487,071	-0,080
Bce111	483746,828	9136158,926	478,215	477,900	-0,315
Bce113	483686,307	9136633,681	483,327	483,071	-0,256
Bce117	474976,904	9145847,192	518,956	519,003	0,047
Bce122	481363,463	9144433,257	504,242	504,456	0,214
Bcp006	535096,662	9083891,590	436,282	436,242	-0,040
Bcp007	534618,596	9083785,874	439,021	438,969	-0,052
Bcp018	534712,486	9084597,410	458,851	458,433	-0,418
Bcp020	536752,104	9084778,482	451,078	451,155	0,077
Bcp024	536818,546	9083900,680	434,415	434,422	0,007
Bcp032	534148,739	9084069,599	454,416	454,052	-0,364
Bcp034	534014,710	9084689,305	461,233	461,004	-0,229
Bcp044	539082,962	9081494,359	442,467	441,988	-0,479
Bcp045	541110,233	9080834,497	413,136	413,167	0,031
Bcp048	538302,988	9083657,151	419,971	419,737	-0,234
Bcp054	541488,462	9078236,698	421,693	421,348	-0,345
Bcp059	538240,763	9087254,018	455,059	455,018	-0,041

Tabela 2 - Comparação entre as cotas ortométricas (DGPS) e as cotas obtidas pelo projeto PE3D

Nota-se que as cotas obtidas pelos dois processos são semelhantes, havendo pouca diferença entre elas, o que não representaria alterações importantes da carga hidráulica, consequentemente os mapas potenciométricos resultantes dos dois nivelamentos seriam idênticos. Sendo a carga hidráulica (h) a diferença entre a cota do terreno (Z) e a profundidade da água no poço (NE), temos h = Z – NE. Os valores que podem influenciar na carga hidráulica são, portanto, o Z e o NE. O nível de precisão dos valores de h depende da escala de trabalho e morfologia do terrenos. Mapas potenciométricos em escalas regionais, como 1:250.000, com terrenos ondulados, podem ser aceitas imprecisões na carga hidráulica de até 2,5m. Em estudos localizados, os erros na obtenção das cargas hidráulicas devem ser inferiores a 10 cm. O estudo estatístico mostrou que a maior diferença, em termos absolutos, foi 0,625 m, enquanto a menor diferença foi 0,007 m, a média 0,211 m, com desvio padrão 0,167 m. A figura 5 mostra a relação entre as cotas ortométrcas do DGPS e as cotas do PE3D. Percebese uma convergência entre as altitudes, cujo coeficiente de correlação linear é 0,99996. Vale salientar que o ângulo das duas retas de ajuste aproxima-se de 45 graus implicando em uma boa semelhança entre os valores duas variáveis, ou seja, o valor de uma corresponde a praticamente ao mesmo valor da outra. A distribuição das variações entre as cotas do DGPS e as cotas do PE3D pode ser visualizada na Figura 6. O histograma desta figura mostra claramente uma distribuição assimétrica dos dados, com concentração do lado esquerdo, ou seja, dos valores menores, sendo 78,0% dos erros inferiores a 0,31m.

Figura 6 - Distribuição estatística das diferenças de cotas entre DGPS e PE3D (em metros) para as bacias Distribuição das variações entre as cotas DGPS e PE3D para as duas bacias

Vale salientar que as coordenadas obtidas com um GPS de navegação, utilizado para o cadastramento de poços, não são tão precisas quanto às obtidas pelo DGPS, dessa forma, utilizar as coordenadas do GPS para obtenção das cotas nas ima gens do PE3D, a princípio poderia resultar em erros acima do aceitável. Entretanto, durante o estudo também foram obtidas as coordenadas por meio do GPS de navegação Garmin 60CSx, e os valores foram comparados na tabela 3.

Tabela 3 - Coordenadas dos	po	os obtidas com GPS	de navegação e DO	SPS
----------------------------	----	--------------------	-------------------	-----

Poço	Coordenadas	s Garmin (m)	Coordenada	Erro	
	UTM(E)	UTM(N)	UTM(E)	UTM(N)	posiçao (m)
Bce001	473355,584	9145099,853	473356,381	9145099,240	1,005
Bce006	473795,076	9144771,240	473797,016	9144772,134	2,136
Bce012	476376,565	9146375,765	476376,897	9146375,765	0,332
Bce016	477338,301	9146694,834	477338,049	9146695,785	0,984
Bce018	479114,109	9148055,107	479113,810	9148056,257	1,188
Bce023	481308,752	9147272,735	481307,122	9147273,597	1,844
Bce025	485286,743	9142953,664	485286,515	9142953,756	0,246
Bce027	476672,358	9146431,430	476671,224	9146431,158	1,166
Bce044	478210,478	9145609,787	478209,480	9145611,009	1,578
Bce056	479661,614	9147292,364	479663,601	9147291,987	2,022
Bce060	480523,869	9141354,376	480523,076	9141355,912	1,729
Bce062	480899,736	9140686,665	480899,896	9140688,702	2,043
Bce065	481876,326	9141509,620	481875,609	9141511,163	1,701
Bce068	482601,490	9146043,555	482599,520	9146045,709	2,919
Bce089	471590,270	9143149,577	471590,936	9143149,766	0,692
Bce106	483380,817	9136032,010	483380,567	9136035,186	3,186
Bce111	483745,798	9136157,744	483746,828	9136158,926	1,568
Bce113	483685,658	9136632,591	483686,307	9136633,681	1,269
Bce117	474975,044	9145846,541	474976,904	9145847,192	1,971
Bce122	481363,702	9144431,189	481363,463	9144433,257	2,082
Bcp006	535096,568	9083892,371	535096,662	9083891,590	0,787
Bcp007	534618,342	9083785,529	534618,596	9083785,874	0,428
Bcp018	534711,455	9084597,097	534712,486	9084597,410	1,077
Bcp020	536749,726	9084775,235	536752,104	9084778,482	4,025
Bcp024	536816,992	9083899,743	536818,546	9083900,680	1,815
Bcp032	534148,004	9084071,179	534148,739	9084069,599	1,743
Bcp034	534013,915	9084689,847	534014,710	9084689,305	0,962
Bcp044	539082,427	9081491,705	539082,962	9081494,359	2,707
Bcp045	541109,313	9080829,863	541110,233	9080834,497	4,724
Bcp048	538302,489	9083655,812	538302,988	9083657,151	1,429
Bcp054	541486,222	9078235,634	541488,462	9078236,698	2,480
Bcp059	538240,496	9087252,344	538240,763	9087254,018	1,695

Na coluna "Erro posição", estão registradas as distâncias entre o ponto com coordenada obtida pelo GPS de navegação e o ponto com coordenada obtida pelo DGPS. A maior diferença entre as coordenadas obtidas pelos dois métodos foi de 4,724 m, enquanto que a menor diferença foi de 0,246 m. A média foi de 1,780 m e o desvio padrão de 0,995 m. As diferenças aqui registradas não são suficientes para que a cota obtida utilizando as coordenadas do GPS de navegação apresentem erros que possam mudar a forma do mapa potenciométrico. Com isso, fica demostrando que as coordenadas obtidas com GPS de navegação, possuem o mesmo grau de precisão para a determinação das cotas com o PE3 que as coordenadas obtidas com DGPS.

5. CONCLUSÃO

As elevações obtidas a partir das imagens do PE3D, compara

das as determinadas por DGPS, apresentam uma boa aproximação, com pequenas variações, e permitem a elaboração de mapas potenciométricos detalhados, uma vez que essas diferenças alteram pouco ou quase nada nas curvas equipotenciais. Dessa forma, a utilização de mapas potenciométricos feitos a partir de imagens do projeto PE3D é recomendada tanto para estudos regionais e preliminares, quanto para estudos detalhados. Também foi demonstrando que, mesmo obtendo-se as coordenadas dos poços com o GPS de navegação, é possível obter as cotas pelo PE3D sem grandes diferenças em relação ao DGPS.

REFERÊNCIAS

COSTA, S. M. A.; LIMA, M. A. D. A.; JÚNIOR, N. J. D. M.; ABREU, M. A.; SILVA, A. L. D.; FORTES, L. P. S. RBMC em tempo real, via NTRIP, e seus benefícios nos levantamentos RTK e DGPS. In: SIMPÓSIO BRASILEIRO DE CIÊNCIAS GEODÉSICAS E TEC-NOLOGIAS DA GEOINFORMAÇÃO, 2. [*Anais...*] 8-11 set. 2008, Recife. As Ciências geodésicas e tecnologias da geoinformação no contexto de estudos e aplicações em geociências, engenharias e meio ambiente. Recife: Universidade Federal de Pernambuco, 2008.

DEMETRIO, J. G.; CORREIA, L.C. & SARAIVA, A.L. Utilização de imagens, 2006.

SRTM na confecção de mapas potenciométricos. XIV CONG. BRAS. DE ÁGUAS SUBTERRÂNEAS, 14., 2006. [*Anais...*]. ABAS. Curitiba, 2006.

HESSEL, M. H.; TOMÉ, M.E.; MOURA, C.R. Ostracodes mesozoicos das bacias do interior do Nordeste Brasileiro: o estado da arte. *Revista de Geologia*, v. 19, n. 2, p. 187-206, 2006. IBGE (Instituto Brasileiro de Geografia e Estatística), Modelo de Ondulação Geoidal. Disponível em: https://ww2.ibge.gov.br/home/geociencias/geodesia/modelo_geoidal.shtm. Acesso: 18 fev. 2019.

LÖBLER, C. A.; TERRA, L. G.; SILVÉRIO DA SILVA, J. L. Dados da CPRM/SIAGAS e Imagens STRM como Base Cartográfica na Elaboração de Mapeamento em Recursos Hídricos Subterrâneos em Escala Municipal: o Caso de Nova Palma, RS. *Revista Brasileira de Geografia Física*, v. 7, n. 3, p. 513-523, 2014.

MONICO, J. F. G. *Posicionamento pelo NAVSTAR-GPS*: descrição, fundamentos e aplicações. São Paulo: Editora UNESP, 2000.