

AVALIAÇÃO DA VULNERABILIDADE DE AQUÍFEROS LOCALIZADOS NA REGIÃO CENTRAL DE CANOAS – RS

EVALUATION OF AQUIFERS VULNERABILITY LOCALIZED IN THE CENTRAL REGION OF CANOAS - RS

Guilherme Lahm Feron¹, Pedro Antonio Roehe Reginato²

Artigo recebido em: 28/02/2014 e aceito para publicação em: 30/05/2014.

Abstract: This paper presents the study of natural vulnerability of aquifers localized in the central region of Canoas city (metropolitan region of Porto Alegre, RS), based in the GOD method. For the study were analyzed geological and hidrogeological data from 46 wells, obtained at the SIAGAS data base (CPRM). The main aquifers of that region are associated with shales which have thickness between 6 m and 50 m and are located at depths between 30 m and 175 m and, with sandstones that possesses medium thickness of 8,2 m and medium depths of 155,5 m. For the G parameter were defined values between 0,2 (confined) to 0,6 (unconfined covered), the O parameter received values between 0,4 and 0,7 (because the main cover strata in the region being clays, silts and sands) and the D parameter, corresponding to the depths of static level stayed between 0,6 and 0,9. The aquifers presented three vulnerability classes (negligible, low and medium), being the biggest area covered by low vulnerability (94,12%). Despite of the aquifers of the study region present low natural vulnerability to contamination, the lack of control and the inadequate installation of those wells may cause the contamination of groundwater, thus, the low vulnerability by itself it's not an guarantee of non contamination for the aquifer.

Keywords: Natural Vulnerability. GOD Method. Canoas-RS.

Resumo: Este artigo apresenta o estudo da vulnerabilidade natural dos aquíferos que estão localizados na região central do município de Canoas (região metropolitana de Porto Alegre, RS), com base na utilização do método GOD. Para o estudo foram analisados dados geológicos e hidrogeológicos de 46 poços tubulares obtidos junto ao banco de dados SIAGAS (CPRM). Os principais aquíferos existentes na região estão associados a folhelhos que apresentam espessuras entre 6 m e 50 m e estão localizados em profundidades entre 30 e 175 m e, a arenitos que possuem espessura média de 8,2 m e profundidade média de 155,5 m. Para o parâmetro G foram definidos valores entre 0,2 (confinado) e 0,6 (não confinado coberto), o parâmetro O recebeu valores entre 0,4 e 0,7 (devido aos principais estratos de cobertura na região serem argilas, siltes e areias) e o parâmetro D, correspondente à profundidade do nível estático ficou entre 0,6 e 0,9. Os aquíferos apresentam três classes de vulnerabilidade (insignificante, baixa e média), sendo a maior área, abrangida por baixa vulnerabilidade (94,12%). Apesar de os aquíferos da região de estudo apresentarem baixa vulnerabilidade natural à contaminação, a falta de controle e a instalação inadequada de poços tubulares pode causar a contaminação da água subterrânea, e sendo assim, a baixa vulnerabilidade por si só não é garantia da não contaminação do aquífero.

Palavras-chave: Vulnerabilidade Natural. Método GOD. Canoas-RS.

INTRODUÇÃO

As águas subterrâneas são, geralmente, fontes de águas limpas e de boa qualidade. No Brasil, atualmente, 39% dos municípios são abastecidos exclusivamente através de poços tubulares que captam essas fontes. No Rio Grande do Sul, 59% dos municípios do Estado são abastecidos totalmente por águas subterrâneas e 13% dos mu-

nicípios utilizam a água subterrânea como complemento para o abastecimento (ANA, 2010).

No município de Canoas, localizado na região metropolitana de Porto Alegre, existem 115 poços tubulares registrados no banco de dados do Sistema de Informações de Água Subterrânea (SIAGAS, 2013) do Serviço Geológico do

¹ Mestrando do Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e dos Materiais da UFRGS (guiferon@gmail.com).

² Professor do Departamento de Hidromecânica e Hidrologia do Instituto de Pesquisas Hidráulicas (IPH) da Universidade Federal do Rio Grande do Sul (pedro.reginato@ufrgs.br).

Brasil (Companhia de Recursos Minerais – CPRM). Esses poços são utilizados por diversos empreendimentos como: indústrias, condomínios residenciais e empresas particulares. Porém, em função do grande numero de poços instalados e da falta de monitoramento, alguns poços podem se tornar vias de contaminação da água subterrânea, comprometendo, assim, a qualidade da água presente no aquífero.

A contaminação do aquífero depende de diversos fatores, sendo que os principais estão relacionados com as características dos estratos confinantes, com a capacidade de atenuação dos contaminantes pelo meio e com a acessibilidade do contaminante a água subterrânea (FOSTER et. al., 2006; MARQUEZAN, 2008). A análise e a integração desses fatores pode ser utilizada na avaliação da vulnerabilidade de aquíferos.

A preocupação com a vulnerabilidade natural dos aquíferos localizados no município de Canoas levou ao desenvolvimento deste trabalho que tem como objetivo principal promover a ca-

racterização dos aquíferos captados por poços tubulares localizados na região central do município de Canoas e avaliar a vulnerabilidade natural desses aquíferos. A avaliação da vulnerabilidade foi realizada com o emprego da metodologia GOD ("Groundwater Polluition Risk Evaluation", Foster e Hirata, 1988; Foster et. al. 2006).

LOCALIZAÇÃO, CARACTERIZAÇÃO GE-OLÓGICA E HIDROGEOLÓGICA DA ÁREA

A área de estudo está localizada na parte central do município de Canoas, na região metropolitana de Porto Alegre (Figura 1), cujas coordenadas são 29° 54′ 36″ Sul e 51° 10′ 48″ Oeste. O município possui divisa com os municípios de Esteio, Cachoeirinha, Nova Santa Rita e a capital, Porto Alegre. A altitude mínima do município é de 4 m, a máxima fica em torno de 33 m sendo que a média é de 8 m acima do nível do mar (IB-GE, 2011; FAMURS, 2013).

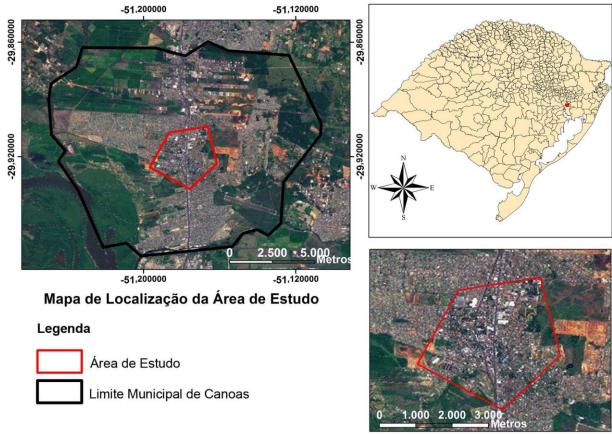
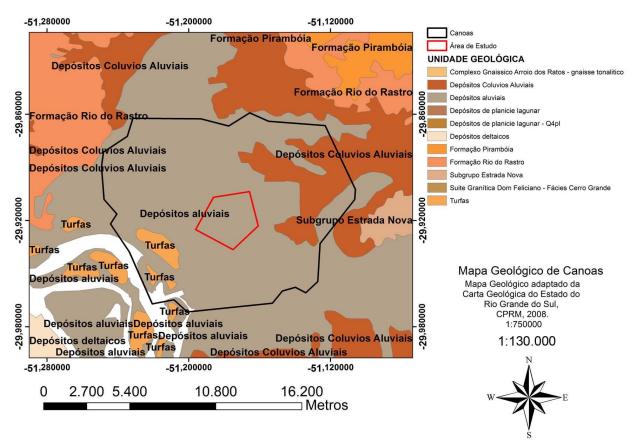
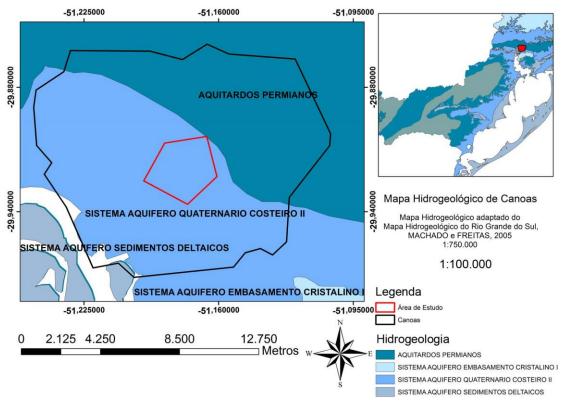



Figura 1 - Localização da área de estudo Figure 1- Location of Study area

De acordo com a Carta Geológica do Estado do Rio Grande do Sul (CPRM, 2008), os principais depósitos sedimentares aflorantes no município, estão representados pelos Depósitos

Aluviais e os Depósitos Colúvio-Aluviais, mas também há ocorrência de Turfas na porção sudo-este (Figura 2).

Figura 2 - Mapa Geológico de Canoas (adaptado de CPRM, 2008) **Figure 2 -** Canoas Geologic Map (adapted from CPRM, 2008)


Segundo Viero (2010) a área de estudo está inserida na Depressão Gaúcha e se localiza na Depressão do Rio Jacuí, sendo que as litologias predominantes estão representadas por arenitos, folhelhos, siltitos e argilitos das Formações Rio Bonito, Palermo, Irati e Rio do Rasto e os arenitos e conglomerados das Formações Piramboia e Sanga do Cabral. Essas litologias ocorrem em diferentes profundidades e são recobertas pelos depósitos aluviais e colúvio-aluviais.

Conforme Machado e Freitas (2005) e Viero (2010) no município de Canoas há ocorrência de duas unidades hidrogeológicas denominadas de Sistema Aquífero Quaternário Costeiro II e Aquitardos Permianos (Figura 3).

O Sistema Aquífero Quaternário Costeiro II é formado por diferentes aquíferos que estão associados aos depósitos sedimentares (camadas de areias finas inconsolidadas e esbranquiçadas intercaladas por camadas de argilas de coloração

cinza). As capacidades específicas variam de baixas a médias, entre 0,5 e 1,5 m³/h/m e os sólidos totais dissolvidos variam entre 600 e 2000 mg/l.

Os Aquitardos Permianos, segundo Machado e Freitas (2005) e Viero (2010) estão associados a rochas do tipo siltitos argilosos, argilitos, folhelhos e pequenas camadas de margas e arenitos. Quando essas rochas apresentam fraturas há possibilidade de formação de aquíferos fraturados, que foram considerados pelos autores como limitados e de baixa capacidade de produção. Nesse caso, os aquíferos apresentam capacidades específicas baixas, inferiores a 0,1 m³/h/m e as águas podem ser duras com grandes quantidades de cálcio e magnésio. Segundo Marquezan (2008) a formação dos aquíferos fraturados está associada as intrusões de diabásios que cortam os siltitos e folhelhos, gerando um sistema de faturamento que dá origem a esse tipo de aquífero.

Figura 3 - Mapa Hidrogeológico de Canoas (adaptado de Machado e Freitas, 2005) **Figure 3** - Canoas Hidrogeologic Map (adapted from Machado e Freitas, 2005)

MATERIAIS E MÉTODOS

A caracterização hidrogeológica da área de estudo foi feita com base na avaliação de dados geológicos e hidrogeológicos disponíveis em publicações e na interpretação dos perfis geológico-construtivos dos poços tubulares identificados na região.

A identificação dos poços tubulares foi realizada através da consulta ao banco de dados do Sistema de Informações de Água Subterrânea (SIAGAS, 2013), sendo que as principais informações analisadas foram: nível estático, perfil geológico, profundidade das entradas de água, tipo de uso previsto e o proprietário, vazão após a estabilização, cota do terreno e localização do poço.

Foram encontrados, ao total, 115 pontos de captação no SIAGAS para o município de Canoas sendo que na zona central há uma maior concentração de poços tubulares (46) que são utilizados, na sua maioria, por condomínios residenciais. Em função disso, essa região foi selecionada para o estudo da vulnerabilidade.

A avaliação da vulnerabilidade dos aquíferos foi feita com base na aplicação da metodologia GOD (Foster e Hirata, 1988; Foster et. al. 2006). Como a área de estudo consiste numa zona altamente urbanizada e relativamente pequena, a

utilização de outros métodos, como o DRASTIC (Aller *et. al.* 1987), se tornou inviável. Os parâmetros do método GOD foram identificados levando em conta os dados geológicos e hidrogeológicos contidos nos relatórios técnicos e perfis construtivos dos poços retirados do SIAGAS. A definição dos valores para cada parâmetro foi baseada na interpretação desses dados e na comparação com os valores padrões definidos pela metodologia (Figura 4).

O parâmetro G, ou Grau de Confinamento do Aquífero, foi classificado através da identificação do estrato aquífero aonde se encontra a primeira entrada d'água de cada poço. Esta escolha foi tomada devido à existência de diversas camadas aquíferas na região, assim, optou-se por adotar o aquífero mais raso presente em cada perfil. Os poços que não continham dados da profundidade das entradas de água ou não possuíam perfil construtivo não foram utilizados. Em função disso, 3 poços (P033, P076 e P081) foram descartados. Com os valores selecionados para todos os poços foi gerado um mapa de classificação do parâmetro G, elaborado a partir da interpolação dos valores atribuídos para cada poço e utilizando a ferramenta Interpolate do ArcGis 10 (ESRI, 2010).

Figura 4 – Descrição dos Parâmetros e Valores Orientadores para aplicação da Metodologia GOD (FOSTER e HIRATA, 1988; FOSTER *et. al.* 2006)

Figure 4 - Description of Parameters and Guiding Values for applying the GOD methodology (Foster and HIRATA, 1988, FOSTER et al 2006)

O parâmetro O, ou Ocorrência de Estratos de Cobertura, foi classificado identificando-se as camadas da zona não saturada logo acima do nível estático de cada poço e adotando-se os valores sugeridos pelo método. Os poços que não possuí-am perfil geológico não foram utilizados (P033, P076 e P081). A partir dos valores atribuídos para cada poço foi gerado um mapa com a interpolação dos pontos.

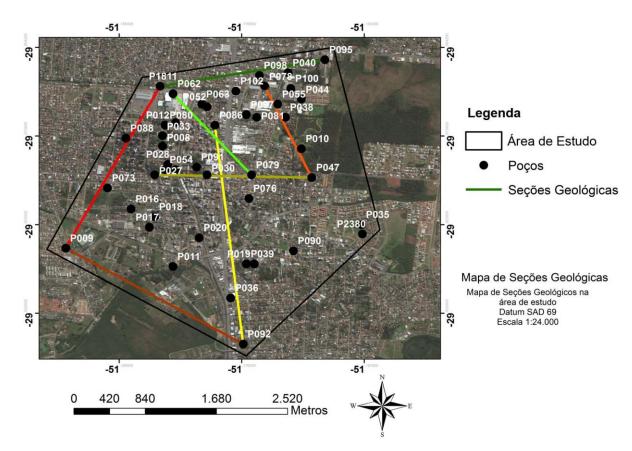
O parâmetro D, Distância ou Profundidade até o Nível de Água foi classificado, para cada poço, conforme indicado no método GOD e interpolado para todos os poços da área. A classificação adotada foi de 0,9 para profundidades de 0m a 5m; 0,8 para valores entre 5m e 20m; 0,7 para as variações de 20m a 50m e índice 0,6 para valores de profundidade de nível estático maiores que 50m. Um poço foi descartado pois não tinha informação sobre o nível estático (P097).

O Mapa de Vulnerabilidade foi obtido através da ferramenta *Raster Calculator* do *ArcGis 10* (ESRI, 2010). Foi executada a multiplicação dos dados no formato raster, pixel a pixel, para gerar uma nova imagem, onde cada

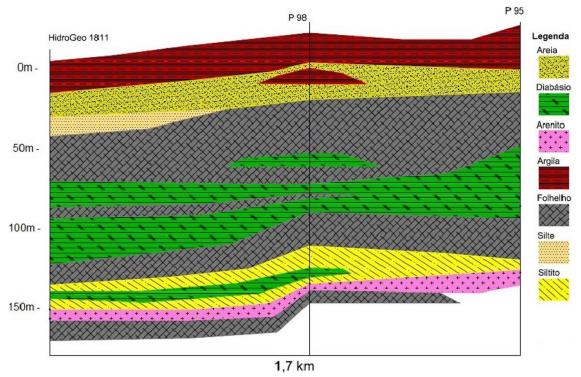
pixel tem um valor atribuído igual ao resultado da multiplicação dos valores das imagens originais (MEDEIROS *et. al.*, 2011). Os mapas dos parâmetros G, O e D foram multiplicados e o resultado gerado foi o Mapa de Vulnerabilidade Natural GOD.

RESULTADOS E DISCUSSÃO

Na área de estudo foram selecionados 46 poços tubulares (Figura 5) cujos dados (identificação, coordenadas, nível estático, uso da água, cota, presença de perfil litológico) são apresentados na Tabela 1.


Os dados geológicos dos poços tubulares foram interpretados e utilizados na elaboração de seções geológicas (Figura 5) que permitiram avaliar a distribuição estratigráfica, bem como características hidrogeológicas dos aquíferos (tipo de aquífero, profundidade de ocorrência, espessura). Nas figuras 6 e 7 são apresentadas duas seções geológicas que representam a distribuição estratigráfica das principais litologias identificadas na área.

 $\boldsymbol{Tabela~1}$ - Identificação dos poços tubulares


 Table 1 - Identification form of wells

Identificação- Nº Poço	UTM (S)	UTM (E)	NE (m)	Uso da água	CT (m)	Perfil Litológico
P008	6690702	482242	16,50	Outros	22	S
P009	6689513	481247	7,00	Industrial	8	S
P010	6690666	483672	32,87	Outros	20	S
P011	6689276	482353	20,50	Industrial	12	S
P012	6690957	482268	43,50	Condominio	10	S
P015	6690974	482375	16,80	Condominio	6	S
P016	6689948	481938	40,72	Condominio	15	S
P017	6689757	482126	20,37	Condominio	11	S
P018	6689862	482177	13,90	Condominio	5	S
P019	6689328	483185	4,27	Condominio	8	S
P020	6689632	482626	13,46	Condominio	9	S
P026	6690427	482377	20,80	Outros	26	S
P027	6690356	482172	49,53	Outros	25	S
P028	6690475	482295	11,84	Outros	24	S
P030	6690370	482707	64,00	Condominio	21	S
P033	6690837	482248	8,25	Condominio	17	N
P035	6689776	484287	12,40	Outros	-	S
P036	6688927	482945	9,00	Condominio	_	S
P038	6691045	483497	21,00	Outros	30	S
P039	6689323	483114	5,00	Condominio	19	S
P040	6691575	483547	36,70	Industrial	28	S
P044	6691265	483668	47,30	Outros	28	S
P047	6690338	483770	11,00	Condominio	23	S
P052	6691172	482715	31,34	Condominio	17	S
P054	6690428	482270	14,00	Condominio	24	S
P055	6691181	483440	38,86	Industrial	28	S
P062	6691308	482355	10,77	Condominio	7	S
P063	6691187	482656	28,56	Condominio	, 14	S
P073	6690212	481676	4,40	Industrial	7	S
P076	6690093	483123	40,30	Condominio	, 25	N
P078	6691404	483289	46,70	Industrial	28	S
P079	6690356	483152	52,21	Condominio	24	S
P080	6690950	482264	22,50	Condominio	13	S
P081	6691046	483202	42,00	Industrial	27	N
P086	6690947	482796	43,35	Outros	26	S
P088		481873	40,80		24	S
P090	6690783 6689481	483588	5,43	Condominio Outros	4 4	s S
P090				Outros	21	S
	6690459	482595	30,00		31 10	
P092	6688386 6601705	483080	60.6	Condominio	10	S
P095	6691705	483918	44,31	Industrial	28	S
P097	6691063	483099	- E7 10	Outros	26	S
P098	6691526	483232	57,10	Industrial	24	S
P100	6691381	483573	28,00	Industrial	27	S
P102	6691335	482990	35,00	Industrial	21	S
P1811	6691415	482223	49,68	Industrial	5	S
P2380	6689670	484298	10,80	Outros	19	S

NE = nível estático; CT = cota do terreno.

Figura 5 - Distribuição dos Poços Tubulares e das Seções Geológicas **Figure 5 -** Distribution of Tubular Wells and Geological Sections

Figura 6 – Seção Geológica 1 **Figure 6** - Geological Sections 1

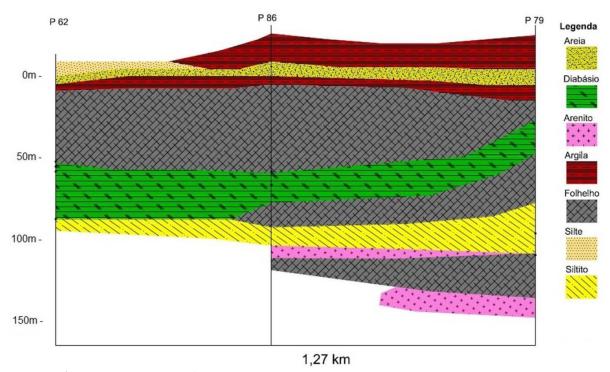


Figura 7 – Seção Geológica 2 Figure 7 - Geological Sections 2

Analisando os dados geológicos e as seções geradas, observa-se que as camadas mais superficiais são representadas por depósitos sedimentares (argilas, areias e siltes) típicos da Formação Rio do Rastro. As camadas inferiores estão representadas por folhelhos (Formação Irati e Estrada Nova), siltitos (Formação Palermo) e folhelhos escuros e arenitos (Formação Rio Bonito). As camadas de folhelho possuem espessuras variáveis entre 6 e 50 m e podem ser encontradas em profundidades de 30 até 175 m. As camadas de arenito possuem espessuras médias de 8,2 m e são encontradas em profundidades médias de 155,5 m. Além disso, há ocorrência de intrusões de diabásio que cortam as rochas sedimentares em diferentes locais e profundidades. Essas intrusões deram origem a fraturas que cortam as diferentes litologias.

Os aquíferos identificados na região estão associados às fraturas existentes nos folhelhos, siltitos e diabásio e as camadas de arenitos, sendo que os folhelhos e arenitos correspondem aos principais aquíferos captados pelos poços tubulares. Dessa forma, os poços não captam água dos aquíferos que formam o Sistema Aquífero Quaternário Costeiro II. Deve-se destacar que um poço pode captar água das fraturas associadas aos folhelhos, bem como dos arenitos que se encontram em maior profundidade. A profundidade dos poços varia entre 62,5 m a 243 m, com uma média de 130 m.

A vulnerabilidade natural dos aquíferos

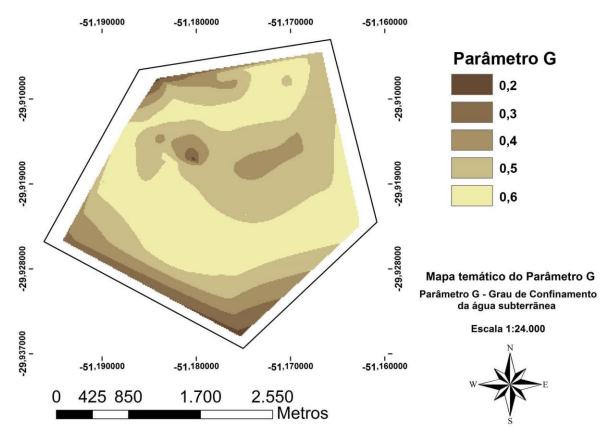
foi avaliada através da metodologia GOD, sendo que para cada um dos parâmetros foi gerado um mapa temático. Na Tabela 2 são apresentados os valores que foram definidos para cada um dos parâmetros G, O e D, bem como os valores resultantes do cálculo da vulnerabilidade (multiplicação dos parâmetros G x O x D).

O parâmetro G foi definido com base na interpretação dos perfis geológicos sendo que os valores selecionados variaram entre 0,2 (aquífero associado a camadas de arenito que está localizado a uma maior profundidade e possui camadas confinando o mesmo) e 0,6 (aquíferos associados aos folhelhos, diabásios e siltitos). A interpolação desses valores resultou no mapa temático do parâmetro G, apresentado na Figura 8.

A análise dos perfis geológicos dos poços indicou que os principais estratos de cobertura correspondem a argilas, siltes e areias que foram utilizados na definição dos valores do parâmetro O. Os valores definidos variaram entre 0,4 (camadas de argila), 0,5 (camadas de siltes), 0,6 (camadas de folhelhos) e 0,7 (areias aluviais). Com base nesses dados foi gerado o mapa temático do parâmetro O (Figura 9).

O parâmetro D foi definido com base na avaliação dos níveis de água dos poços, sendo que os valores selecionados variaram entre 0,6 (mais de 50 m de profundidade) e 0,9 (até 5 m). Na Figura 10 é apresentado o mapa temático do parâmetro D.

A partir dos 3 mapas foi feita a multiplicação dos valores de cada mapa e gerado o mapa de vulnerabilidade natural dos aquíferos que é apresentado na Figura 11.


Para a área de estudo foram definidas 3 classes de vulnerabilidade: insignificante, baixa e

média. A vulnerabilidade predominante na área de estudo foi a baixa, cobrindo 94,12% da região, seguida pela média com 3,08% de área e por último a insignigicante, que corresponde a 2,80% da área.

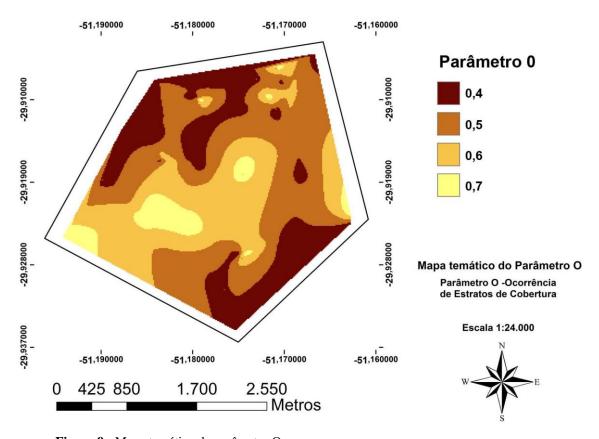
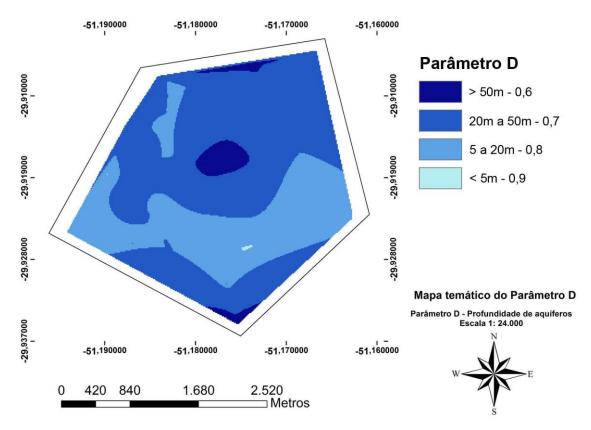

Tabela 2 – Parâmetros G, O, D

Table 2 - G,O,D parameters


Identificação- Nº Poço	Parâmetro G	Parâmetro O	Parâmetro D	G.O.D	Primeiro aquífero captado
P008	0,4	0,4	0,8	0,128	Folhelho
P009	0,3	0,7	0,8	0,168	Arenito Fino
P010	0,4	0,5	0,7	0,140	Diabásio
P011	0,6	0,5	0,7	0,210	-
P012	0,6	0,4	0,7	0,168	-
P015	0,6	0,5	0,8	0,240	-
P016	0,6	0,5	0,7	0,210	-
P017	0,6	0,7	0,7	0,294	-
P018	0,6	0,7	0,8	0,336	-
P019	0,6	0,7	0,9	0,378	-
P020	0,6	0,7	0,8	0,336	-
P026	0,6	0,6	0,7	0,252	-
P027	0,5	0,5	0,7	0,175	Folhelho
P028	0,6	0,6	0,8	0,288	-
P030	0,5	0,4	0,6	0,120	Folhelho
P033	0,6	0,7	0,8	0,336	-
P035	0,6	0,7	0,8	0,336	Folhelho
P036	0,5	0,4	0,8	0,160	Quartzito
P038	0,6	0,4	0,7	0,168	Folhelho
P039	0,6	0,4	0,8	0,192	Folhelho
P040	0,6	0,7	0,7	0,294	Folhelho
P044	0,6	0,6	0,7	0,252	Folhelho
P047	0,5	0,4	0,8	0,160	Diabásio
P052	0,5	0,7	0,7	0,245	Diabásio
P054	0,5	0,4	0,8	0,160	Folhelho
P055	0,6	0,7	0,7	0,294	Folhelho
P062	0,5	0,5	0,8	0,200	Diabásio
P063	0,5	0,4	0,7	0,140	Diabásio
P073	0,6	0,4	0,9	0,216	Folhelho
P076	0,6	0,7	0,7	0,294	-
P078	0,6	0,4	0,7	0,168	Diabásio
P079	0,4	0,7	0,6	0,168	Siltito
P080	0,6	0,4	0,7	0,168	Folhelho
P081	0,6	0,7	0,7	0,294	-
P086	0,6	0,4	0,7	0,168	Folhelho
P088	0,6	0,4	0,7	0,168	Folhelho
P090	0,6	0,4	0,8	0,192	Folhelho
P091	0,2	0,4	0,7	0,056	Arenito Fino
P092	0,2	0,4	0,6	0,048	Arenito Médio
P095	0,5	0,4	0,7	0,140	Diabásio
P097	0,6	0,4	0,9	0,216	-
P098	0,6	0,4	0,6	0,144	Folhelho
P100	0,5	0,4	0,7	0,140	Folhelho
P102	0,4	0,4	0,7	0,112	Diabásio
P1811	0,2	0,4	0,7	0,056	Arenito Fino
P2380	0,6	0,4	0,8	0,192	Folhelho

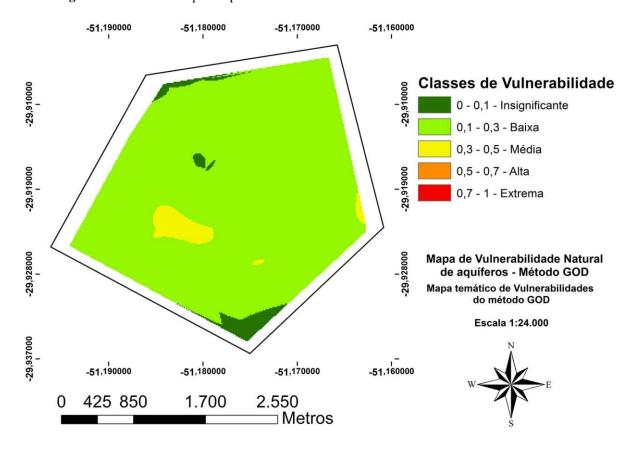

Figura 8 - Mapa temático do parâmetro G **Figure 8** - Thematic map of G parameter

Figura 9 - Mapa temático do parâmetro O **Figure 9** - Thematic map of O parameter

Figura 10 - Mapa temático do parâmetro D **Figure 10** - Thematic map of D parameter

Figure 11 - Mapa temático de vulnerabilidade Natural de aquíferos **Figure 11 -** Thematic map of aquifer natural vulnerability

A identificação de uma predominância de vulnerabilidade baixa para a região de estudo é explicada, pois os aquíferos estão localizados a uma maior profundidade, sendo que em geral, possuem uma cobertura de sedimentos de granulação fina (argilas e siltes). Aliado a isso, a profundidade dos níveis de água é, na sua maioria, superior a 20 metros. Esses dados indicam que a área apresenta uma baixa acessibilidade hidráulica em função das características geológicas e hidrogeológicas e uma baixa vulnerabilidade natural a contaminação. Nas áreas onde há ocorrência de aquíferos fraturados que estão recobertos por depósitos de sedimentos arenosos e que possuem níveis de água pouco profundos (inferiores a 20 metros) a vulnerabilidade passa a ser média. Essas áreas, apresentam um maior potencial a contaminação pois a acessibilidade hidráulica é aumentada em função das características geológicas e hidrogeológicas.

Porém, mesmo que na área tenha sido identificado um predomínio de vulnerabilidade baixa a insignificante (96,92%), os aquíferos podem ser contaminados. A vulnerabilidade natural do aquífero não leva em consideração as contaminações geradas através de poços mal construídos ou que são explotados sem controle. Poços que apresentam problemas construtivos tornam-se vias de contaminação do aquífero, pondo em risco os usuários da água subterrânea.

CONCLUSÕES

Na área de estudo há ocorrência de dois aquíferos principais, os fraturados e os granulares confinados. Os aquíferos fraturados estão associados a estruturas presentes em folhelhos e siltitos, que foram originadas pelas intrusões de diabásio que cortaram essas rochas. Esses aquíferos ocorrem em diferentes profundidades sendo que os poços que captam os mesmos podem apresentar mais de uma entrada de água. Os aquíferos granu-

REFERÊNCIAS

ALLER, L.; BENNET, T.; LEHR, J.H.; PETTY, R.; HACKETT, G. **DRASTIC**: a standardized system for evaluating grondwater pollution potential using hydrogeologyc settings. US E.P.A. – EPA/600/2-87/035, 1987.

ANA (BRASIL). **Atlas Brasil**: abastecimento urbano de água: panorama nacional. Agência Nacional de Águas; Engecorps/Cobrape – Brasília : ANA : Engecorpos/Cobrape, 2010. Volume 1 e 2.

CPRM. Carta Geológica do Estado do Rio Grande do Sul, Porto Alegre. Ministério das Minas e Energia. 2008.

lares estão associados a arenitos e ocorrem em profundidades maiores, abaixo das camadas de siltitos, folhelhos e diabásios. Em função disso, esses aquíferos podem ser considerados como granulares confinados.

As camadas mais superficiais que recobrem esses aquíferos consistem de depósitos sedimentares argilosos, siltosos e arenosos, sendo que os primeiros predominam na região.

Os poços tubulares identificados na área captam água tanto dos aquíferos fraturados como dos granulares confinados, sendo utilizados principalmente, por condomínios residenciais.

A interpretação dos dados geológicos e hidrogeológicos permitiu definir diferentes pesos para os parâmetros G, O e D (metodologia GOD). Os valores do parâmetro G variaram entre 0,2 (confinado) e 0,6 (não confinado coberto), enquanto que para o parâmetro O foram definidos valores entre 0,4 (argilas) e 0,7 (areias aluviais). Por fim, o parâmetro D apresentou valores entre 0,6 e 0,9 visto que as profundidades dos níveis de água são variáveis, mas na sua maioria superiores a 20 metros.

Com base nesses valores foi determinada a vulnerabilidade natural dos aquíferos, sendo que na maior parte da área a mesma foi considerada como baixa a insignificante. Isso é explicado, pois na região predominam aquíferos localizados em numa maior profundidade que são recobertos por camadas de sedimentos finos (argilas e siltes) e a profundidade dos níveis de água, na sua maioria, é superior a 20 metros.

No entanto, a baixa vulnerabilidade encontrada não exclui a possibilidade de ocorrência de contaminação, pois poços tubulares que captam água dos aquíferos fraturados associados ao folhelho, que possuem entradas de água mais próximas a superfície e que são recobertos por sedimentos arenosos ou siltosos, podem se tornar mais vulneráveis.

ESRI, Software ArcGis, Versão 10.0. Redlands, CA: Environmental Systems Research Institute, 2010.

FAMURS. Dados Gerais – Canoas/RS. Disponível em: http://www.portalmunicipal.org.br/entidades/famurs/dado_geral/mumain.asp?ilildE=5523&ildMun=100143074 https://www.portalmunicipal.org.br/entidades/famurs/dado_geral/mumain.asp?ilildE=5523&ildMun=100143074 https://www.portalmunicipal.org.br/entidades/famurs/dado_geral/mumain.asp?ilildE=5523&ildMun=100143074 https://www.portalmunicipal.org.br/entidades/famurs/dado_geral/mumain.asp?ilildE=5523&ildMun=100143074 https://www.portalmunicipal.org.br/entidades/famurs/dado_geral/mumain.asp?ilildE=5523&ildMun=100143074 <a href="https://www.portalmunicipal.org.br/entidades/famurs/dado_geral/mumain.asp?ilildE=5523&ildMun=100143074 <a href="https://www.portalmunicipal.org.br/entidades/famurs/dado_geral/mumain.asp?ilil

FOSTER, S. S. D.; HIRATA, R. C. A. **Groundwater pollution risk evaluation**: the methodology using available data. Lima: CEPIS/PAHO/WHO, 1988.

FOSTER, S.; HIRATA, R.; GOMES, D.; D'ELIA, M.; PARIS, M. Proteção da qualidade da água subterrâ-

nea: um guia para empresas de abastecimento de água, órgãos municipais e agências ambientais. Banco Internacional de Reconstrução e Desenvolvimento/Banco Mundial, 2006.

IBGE. **Censo Demográfico 2010**. IBGE, abril de 2011. Disponível em http://censo2010.ibge.gov.br/pt/>. Acesso em 24/04/2013.

MACHADO, J. L.; FREITAS, M. A. de. Projeto Mapa Hidrogeológico do Rio Grande do Sul: Escala 1:750.000, relatório final. Porto Alegre: CPRM, 2005. 1 CD-ROM.

MARQUEZAN, R. G. Análise de recursos digitais como ferramentas de avaliação em ações de proteção de aquíferos no trajeto de oleodutos. 2008. 184p. Tese (Doutorado) – Instituto de Pesquisas Hi-

dráulicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2008.

MEDEIROS, C. M.; RIBEIRO, M. A. de F. M.; RUFINO, I. A. A.; BARBOSA, D. L.; Mapeamento da vulnerabilidade de parte da Bacia Sedimentar do Baixo Curso do Rio Paraíba utilizando o método GOD. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO – SBSR, 15., Curitiba, PR, 2011. **Anais**, INPE, p. 3819.

SIAGAS. Portal SIAGAS. Disponível em: http://siagasweb.cprm.gov.br/layout/. Acesso em: 14/04/2013.

VIERO, A. C. **Geodiversidade do Estado do Rio Grande do Sul**. Porto Alegre: CPRM, 2010. 250p; 30cm, 1 DVD-ROM.