HIDROGEOLOGIA DA REGIÃO DO AEROPORTO INTERNACIONAL DE SÃO PAULO, GRABEN DO BAQUIRVU-GUAÇU, MUNICÍPIO DE GUARULHOS, SP.

HÉLIO NÓBILE DINIZ*
URIEL DUARTE**
HÉLIO NORIO KOBAYASHI***

RESUMO

O abastecimento de água do Aeroporto Internacional de São Paulo (AISP) é suprido através da captação de 7 poços tubulares, construídos com profundidades variáveis entre 115,50m e 185,50m, totalmente dentro do aquífero sedimentar da Bacia de São Paulo, e que fornecem, em média, cerca de 2.700 m³ de água por dia.

O aquífero explorado é constituído por arenitos, argilitos e conglomerados, consolidados e inconsolidados, da Bacia Sedimentar de São Paulo. Como a Bacia esteve sujeita a sucessivos esforços tectônicos durante a fase de sedimentação, a topografia do embasamento é extremamente irregular e, como consequência, os poços que captam água neste aquífero, mesmo quando construídos próximos, atingem as rochas do embasamento em profundidades bem diferentes.

A operação dos poços se iniciou em 1984, quando o nível piezométrico se encontrava a cerca de 10m de profundidade. As mudanças nas condições de cobertura, como a impermeabilização da área do AISP, fizeram com que diminuísse as reservas renováveis, provocando uma descida nos níveis piezométricos. Isto causou uma mudança nos valores do coeficiente de armazenamento dos sedimentos situados na área de influência dos poços, já que a capacidade de armazenamento de uma camada aquífera depende da razão entre a espessura saturada e insaturada desta camada, como preconizado por KOVÁKS (1981).

Devido ao tipo de aquífero, livre, a diminuição dos valores do coeficiente de armazenamento aumentou o raio de influência dos poços e a interferência provocada fez com que o nível piezométrico diminuísse numa razão de até 0,40m/mês, chegando atualmente a cerca de 55m, com grande perda na produtividade dos poços.

Este trabalho apresenta um quadro geral do potencial hidrogeológico do Graben do Baquirivu, e os resultados obtidos com a captação da água subterrânea através de poços tubulares.

1.INTRODUÇÃO

O Aeroporto Internacional de São Paulo, situado em Cumbica, Município de Guarulhos, na Região Metropolitana de São Paulo, possui uma população oscilante de 60.000 pessoas/dia. Para atender a demanda de água desta população de pessoas em trânsito, dos aviões, das áreas industriais e de permanência, é necessário um suprimento de 2.700.000 l/dia (equivalente, aproximadamente, a um consumo de 45 l/dia, por pessoa), em média.

** Professor Doutor do Instituto de Geociências da Univ. de São Paulo.
*** Engenheiro da Empresa Brasileira de Infra-Estrutura Aeroportuária.
Atualmente, todo o suprimento da demanda do AISP é feito através da captação de água de 7 poços tubulares profundos, construídos dentro da área do Aeroporto.

A área do AISP se encontra situada no limite oeste da área do AISP, os mananciais do rio Baquirivu-Guaçu, são condicionados pela atividade neotectônica da Bacia, movimentos estes de reativação de falhas inversas com direção preferencial NW. O graben do rio Baquirivu é preenchido, principalmente, pelos sedimentos da Formação Resende (Oligoceno da Bacia Sedimentar de São Paulo), Formação Itaquaquecetuba (Pleistoceno) e por depósitos aluvionares recentes (Quaternário).

A Formação Resende pertence ao Grupo Taubaté, descrito na Bacia de Resende, onde se localiza a sua secção tipo (AMADOR, 1975; RICHIARDO, 1980). A formação Resende representa mais de 80% da pilha sedimentar da Bacia de São Paulo, e é constituída por depósitos de leques aluviais que gradam para depósitos fluviais de rios entrelacedados.

Os litotipos que caracterizam a Formação Resende são conglomerados com matasções e seixos, de forma e composição variada, e diamictitos de matriz lamosa, de cor esverdeada, mais frequentes na base da sequência, gradacionando em direção às partes centrais da bacia deposicional para lamitos arenosos e arenitos de cores avermelhadas e esbranquiçadas (facies de rios entrelacedados). São frequentes os níveis de conglomerados, contendo seixos de quartzo, quartzo e fragmentos das rochas gnaissicas do embaçamento.
A Formação Itaquacuetuba recebeu esta denominação pela primeira vez por COIMBRA et alii (1983). Antes disso, seus sedimentos eram referidos como "aluvios antigos" dos rios Tietê e Pinheiros. Os sedimentos são constituídos predominantemente por areias de granulação grossa, mal selecionadas, com grãos angulosos ou redondados, com pouca matriz siltico-argilosa e com restos vegetais. A composição mineralógica destas areias, formadas por quartzo, feldspatos, e minerais pesados instáveis, como a turmalina, sillimanita, granada, cianita, andaluzita e hornblenda, caracteriza estes depósitos como originados diretamente das rochas metamórficas e não retrabalhados pelos sedimentos pré-existentes. Estes pacotes arrosados espremidos apresentam estratificações cruzadas tabulares e tangenciais de médio porte e se caracterizam por depósitos de preenchimento de paleocanais, barras transversais e pavimentos detriticos. Os depósitos aluvionares recentes, são caracterizados por argilias porosas vermelhas e por turfeiras originadas em ambiente redutor, pantanoso, associada às planícies de inundação dos rios Tietê e Baquirivu-Guaçu.

4. HIDROGEOLOGIA

Na área do Aeroporto Internacional de São Paulo ocorrem dois tipos de sistemas aquíferos de expressão regional: o cristalino e o sedimentar. O potencial do sistema aquífero cristalino é, em grande parte, desconhecido na área, já que não há poços perfurados sómente neste sistema, no local do AIS. Na área, o trecho da Falha do Jaguari, separa as rochas cristalinas em dois blocos, um ao norte e outro ao sul. O bloco sul é constituído por migmatitos e gnaisses sotopostos à cobertura sedimentar terciária e quaternária, constituído por rochas dúcteis impermeáveis à excessão de um manto de intemperismo existente, derivado de processos exógenos que formaram um paleosolo relativamente espesso, e que se encontra preservado sobre a cobertura sedimentar pós-tectônica. Mesmo assim, este manto de intemperismo, que pode atingir mais de uma dezena de metros, é bastante argiloso e não permite a circulação da água subterrânea, sendo potencialmente pouco produtivo.

No bloco norte, ocorrem metarenitos, anfibolitos, xistos e filitos do Grupo São Roque, que estiveram sujeito a esforços tectônicos de natureza distensiva, portando sistemas de fraturas naturais que, em alguns casos, podem ser produtivos. WENGENESE (1991) encontrou vazões médias entre 20 e 25 m³/h para poços locados com critério hidrogeológico e perfurados nestes litotipos, na Falha de Santana do Parnaíba, na parte noroeste da RMSP.

Em seguida, BASS (1975), no Município de Barueri, em 43 poços analisados e perfurados dentro do sistema aquífero cristalino, a vazão média encontrada foi de 4,2 m³/h e a vazão específica de apenas 0,15 m³/h.

Na área, o sistema aquífero sedimentar é sustentado pelos sedimentos terciários e quaternários constituintes do Graben do Baquirivu.

O potencial do sistema aquífero sedimentar, é bem menor conhecido, na área do AIS. Pode depender, fundamentalmente, da natureza dos sedimentos, que são caracterizados por distribuição granulométrica da fração grosseira, do tipo e porcentagem da matriz, do tipo e consolidação do cimento intersticial, e da espessura saturada das camadas aquíferas. O potencial da natureza granulométrica e da matriz, na área do AIS, até uma profundidade aproximada de 80 a 100 m, encontra-se de depósitos de arenitos grosseiros, mal selecionados, conglomeráticos, contendo granos angulares, inconsolidados, arcoízios, de cor cinza amarelada, com pouca matriz argilosa (menos que 15%). São depósitos de rios meandrantes e podem ser correlacionados com a Formação Itaquacuetuba de COIMBRA et alii (1983).

Estes depósitos geralmente são recobertos por um solo argiloso, com muita matéria orgânica, com espessura máxima de 10 m, que correspondem a depósitos aluvionares quaternários associados às planícies de inundação dos rios que cortam a área.

Quanto à natureza do cimento, este geralmente é formado por minerais constituintes de óxidos, carbonatos e sulfatos de ferro, que são bastante instáveis.

O nível d'água destes sedimentos é controlado pelo nível de base do rio Tietê, situado em torno da cota 725 m.

Abaixo da profundidade de 80 a 100 m, os depósitos sedimentares podem ser correlacionados com a Formação Resende (RICCOMINI, 1989), do terciário da Bacia de São Paulo, que é constituída por depósitos fanglomeráticos (leques aluviais) que gradam para depósitos relacionados com a planicie aluvial de rios retaflados. Tais depósitos são constituídos, predominantemente, por facies de arenitos e conglomerados do sistema fluvial retaflado e por facies de lagos dos leques aluviais.

O aquífero sedimentar é ao tipo livre. A permeabilidade média oscila entre 0,8 e 2,6 m/dia, a transmissividade entre 72 e 165 m²/dia, a porosidade efetiva média em torno de 10%, e a espessura saturada média em torno de 100 m. Com estas características hidrodinâmicas o aquífero permite a exploração por poços que fornecem vazões de até 50 m³/h, para períodos de bombardeio de até 12 horas/dia. O raio de influência pode atingir até 250 m para extrações desta categoria.

5. ABASTECIMENTO DE ÁGUA NO AIS

Inicialmente, a partir de 1984, segundo MARIANO & SILVEIRA (1984), foram construídos 4 poços no AIS. Eles explorando o sistema aquífero sedimentar, cujas condições de exploração foram estabelecidas como descrito na tabela abaixo:

<table>
<thead>
<tr>
<th>POÇO</th>
<th>PROFUNDIDADE</th>
<th>NÍVEL ESTÁTICO</th>
<th>NÍVEL DINÂMICO</th>
<th>VAZÃO</th>
</tr>
</thead>
<tbody>
<tr>
<td>nº</td>
<td>(m)</td>
<td>(m)</td>
<td>(m)</td>
<td>(m³/h)</td>
</tr>
<tr>
<td>1</td>
<td>157</td>
<td>10,7</td>
<td>50</td>
<td>90</td>
</tr>
<tr>
<td>2</td>
<td>157</td>
<td>14,1</td>
<td>50</td>
<td>110</td>
</tr>
<tr>
<td>3</td>
<td>90</td>
<td>18,6</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>167</td>
<td>20,6</td>
<td>50</td>
<td>120</td>
</tr>
</tbody>
</table>
Embora construídos relativamente próximos aos poços que iam sendo substituídos, em distâncias mínimas de 70m e máximas de até 120m, os sondagens realizadas encontraram o embasamento cristalino em profundidades bem diferentes, com diferenças de níveis mínimos de 12m e máximos de até 50m, mostrando a extrema irregularidade da topografia do embasamento cristalino, o que torna difícil de se prever a espessura dos depósitos sedimentares, mesmo disposto-se de uma malha de informações de subsuperfície relativamente bem fechada, adquirida através de sondagens mecânicas ou de sondagens elétricas, um caso do bloco do AISP.

 Além disso, os poços que foram substituídos, foram construídos mais 4 poços (Figura 1) para complementar o abastecimento, com número sequencial na ordem de construção, sendo que o Poço nº 7 não foi completo, devido a ter atingido o embasamento com pouca profundidade.

As características dos poços e as características hidrodinâmicas do sistema aquifero sedimentar no local dos poços, determinados no mês de julho e agosto de 1993, através de testes de vazão, permitiram o cálculo da seguinte tabela:

<table>
<thead>
<tr>
<th>POÇO</th>
<th>COTA PROFUNDIDADE</th>
<th>COTA N.E.</th>
<th>TRANS. (m²/h)</th>
<th>PERMEAB.</th>
<th>COEF. ARMAZ.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>733,07</td>
<td>148,00</td>
<td>674,93</td>
<td>3,4</td>
<td>0,9</td>
</tr>
<tr>
<td>2</td>
<td>733,66</td>
<td>175,60</td>
<td>675,56</td>
<td>4,1</td>
<td>0,8</td>
</tr>
<tr>
<td>3</td>
<td>739,40</td>
<td>222,00</td>
<td>675,15</td>
<td>3,0</td>
<td>1,2</td>
</tr>
<tr>
<td>4</td>
<td>741,50</td>
<td>128,00</td>
<td>676,57</td>
<td>6,9</td>
<td>2,6</td>
</tr>
<tr>
<td>5</td>
<td>739,09</td>
<td>155,70</td>
<td>675,83</td>
<td>6,5</td>
<td>1,7</td>
</tr>
<tr>
<td>6</td>
<td>734,20</td>
<td>115,50</td>
<td>675,61</td>
<td>2,8</td>
<td>1,2</td>
</tr>
<tr>
<td>7</td>
<td>733,40</td>
<td>195,50</td>
<td>678,70</td>
<td>5,3</td>
<td>0,9</td>
</tr>
</tbody>
</table>

Atualmente, estes 7 poços são explorados durante um tempo médio de 11 horas e 33 minutos por dia, o que dá um total de 2.700 m³/dia. Hoje, já não basta apenas reduzir o período de bombeamento dos poços, na tentativa de se manter o nível hidrodinâmico estável, pois há interferência entre uma parte deles, da ordem de 0,5 a 1,0m de rebaixamento, exceto que aposo situados na área de descarga do aquífero (como é o caso dos Poços 1', 2' e 3', que possuem maior valor do coeficiente de armazenamento).

Quanto aos aspectos qualitativos, as águas do Graben do Baquirivu são bastante apropriadas ao consumo humano, sendo fracamente salinizadas, em torno de 50 p.p.m de sólidos totais de disolvidos, os poços, na tentativa de se manter o nível de dureza, baixas quantidades de ferro e manganeso dissolvido (menor que 1 p.p.m.) e baixos teores de nitrato e fluoreto (menor que 0,5 p.p.m.).
Embora estas águas possuam valor de pH em torno de 7, são fracaente ácidas e possuem altos valores de gás carbônico dissolvido. Isto as torna potencialmente corrosivas para instalações industriais, já que o gás carbônico pode se dissociar facilmente, se transformando em ácido carbônico. Tais condições de equilíbrio hidroquímico podem propiciar, também, a multiplicação de ferroatébacterias, que irão intensificar o ataque às tubulações construídas em ferro.

6. CONCLUSÕES

O Graben do Baquirivu se apresenta como um excelente aquíféro, dentro dos sedimentos da Bacia de São Paulo, com potencial para suprir toda a demanda do AISP. Apesar disto, as mudanças nas condições de cobertura impostas pelas obras de construção do AISP, que fizeram com que aumentasse o runoff (o escoamento superficial das águas que precipitam na bacia) devido à diminuição das áreas de infiltração, provocando mudanças nos valores do coeficiente de armazenamento das camadas aquiférias ao redor dos poços bombeados, que é um parâmetro que depende da relação espessura saturada/insaturada. Tais mudanças provocaram a interferência entre os poços bombeados, situados fora dos locais de descarga do aquífero, com consequências prejudiciais a todo o sistema de extração.

Atualmente, a recarga artificial do aquífero nas zonas que mostram sinais de esgotamento, se apresenta como uma solução, assim como a construção de novos poços em locais de descarga do aquífero, desde que estes novos poços estejam sujeitos a regimes de bombeamento apropriados.

Outra solução, que deve ser investigada, diz respeito ao potencial hidrogeológico das descontinuidades rúpteis das rochas metassedimentares do Grupo São Roque, como preconizado por MENEASSE (1991).

A quantidade de gás carbônico dissolvido nas águas subterrâneas do Graben do Baquirivu, em torno de 10 p.p.m., indicam que são águas de circulação rápida, oriundas principalmente das infiltrações das águas das chuvas que ocorrem na bacia do rio Baquirivu-Guaçu. Estas águas possuem condições físico-químicas apropriadas para o consumo humano, não exigindo o tratamento prévio.

7. BIBLIOGRAFIA

LEGENDA

== == - Canal retificado do rio Baquirivu

--- --- - Canal original do rio Baquirivu

--- --- - Limite aproximado da área do Aeroporto Internacional de São Paulo

P8 - n° do poço da INFRAERO

FIGURA 1. MAPA DE LOCALIZAÇÃO DOS POÇOS.