ANÁLISE FATORIAL DE DADOS ISOTÓPICOS E CONDUTIVIDADE ELÉTRICA PARA IDENTIFICAR DIFERENTES ARMAZENAMENTOS DE ÁGUA SUBTERRÂNEA NO VALE DO CARIRI/CEARÁ

Carla Maria Salgado Vidal Silva¹; Marlúcia Freitas Santiago¹; Franquiberto dos Santos Pessoa²; Josué Mendes Filho¹ & Horst Frischkorn³

Resumo - Duas técnicas estatísticas foram utilizadas para estudar a discriminação de diferentes sistemas aqüíferos feita anteriormente utilizando dados isotópicos. condutividade elétrica e perfis geológicos. Estas técnicas foram aplicadas para investigar a caracterização da água armazenada em diferentes zonas aqüíferas na bacia Sedimentar do Cariri no sul do Ceará, no nordeste do Brasil. Os dados de entrada referentes a cada poço foram as três variáveis: condutividade elétrica, idade de radiocarbono e razão isotópica de oxigênio-18. Os resultados desta análise validam o modelo fenomenológico, descrito com base nos mesmos dados para explicar a circulação das águas subterrâneas nessa região. Identifica-se quatro grupos distintos de águas armazenadas nas três formações aqüíferas no Vale. Utilizando a análise discriminante foi possível confirmar que os quatro diferentes grupos identificados pelas técnicas isotópicas, perfis geológicos e medidas de condutividade elétrica são grupos distintos com uma concordância de mais de 80%; utilizando a análise das correspondências foi possível verificar que os dados utilizados são muito bem correlacionados, necessitando apenas de um eixo fatorial para representá-los.

Palavras-chave - Análise fatorial, isótopos ambientais, água subterrânea

¹ Depto de Física - UFC, Campus do Pici, Caixa Postal 6030, 60.455-760 Fortaleza-CE - Telefone: (85) 288-9913, Fax: 287-4138 - e-mail: carla@fisica.ufc.br; marlucia@fisica.ufc.br; josue@fisica.ufc.br

 ² Depto de Estatística e Matemática Aplicada - UFC, Campus do Pici, Fortaleza-CE, Telefone: (85)288-9849
³ Depto de Eng. Hidráulica e Ambiental - UFC, Campus do Pici, Caixa Postal 6006, 60.451-970 Fortaleza-CE - Telefone: (85) 288-9625, Fax: 288-9627, e-mail: cariri@ufc.br

INTRODUÇÃO

A análise de componentes principais (DAVIS, 1984) tem sido usada na hidrologia como um método para otimizar o manejo de reservatórios (SAAD & TURGEON, 1988), como auxiliar no entendimento dos processos hidrológicos afetando a salinidade do solo e da água subterrânea (DEVEREL, 1989) e como método complementar de identificação da qualidade da água e das principais variáveis responsáveis pelas mudanças em sua qualidade (MELLOUL & COLLIN, 1992).

A água subterrânea no Vale do Cariri, no Estado do Ceará, no nordeste do Brasil, é intensivamente explorada e está armazenada em três zonas aqüíferas: Rio da Batateira, Missão Velha e Mauriti, pertencentes à Bacia Sedimentar do Cariri. Esta bacia sedimentar localizada no sul do Estado, que está encravado quase em sua totalidade em rochas cristalinas, é a mais importante e consiste de um vasto planalto, a Chapada do Araripe, com altitude média de 750 m, tendo no sopé o Vale do Cariri.

Como na área os poços existentes são de exploração e não de pesquisa, a maioria deles explora mais de um aqüífero. Por isso, somente através de medidas dos isótopos ambientais carbono-14 e oxigênio-18, juntamente com medidas de condutividade elétrica foi possível a SANTIAGO et al. (1997) identificarem os diferentes armazenamentos da água subterrânea no Vale do Cariri que se caracteriza por intenso processo tectônico que produziu, na região, uma seqüência de "horsts" e "grabens".

Neste trabalho, a um conjunto de poços tubulares estudados anteriormente por SANTIAGO et al. (1997) foram aplicadas duas técnicas estatísticas fatoriais: a análise das correspondências que descreve a evolução de um aqüífero para outro, em um único eixo fatorial, e a análise discriminante que separa os sistemas de armazenamento subterrâneo identificados usando as medidas isotópicas e a condutividade elétrica.

ÁREA DE TRABALHO

As zonas aqüíferas estudadas pertencem à Bacia Sedimentar do Cariri (DNPM, 1996), na área correspondente ao Vale do Cariri, onde as águas estão armazenadas nas formações (da base para o topo): Mauriti, Missão Velha e Rio da Batateira. A localização da área de trabalho está mostrada na figura 1 que contém um mapa geológico com uma legenda geológica e outra colorida e dois cortes geológicos para melhor visualização do intenso tectonismo onde podem ser melhor observada a presença de "horsts" e "grabens".

A Formação Mauriti, provavelmente do Siluro-Devoniano, é uma sequência monótona de arenitos quartzosos e/ou feldspáticos geralmente silicificados, o que limita a capacidade de acumulação de água nesta formação.

Figura 1 - Área de trabalho

A Formação Missão Velha, separada da Formação Mauriti pela Formação Brejo Santo, de idade do Jurássico, mostra ciclos deposicionais fluviais granodecrescentes e é constituída de arenitos grosseiros, com estratificação cruzada e leitos conglomeráticos. Esta Formação aflora no Vale do Cariri e está confinada pela Formação Abaiara que a separa da Formação Rio da Batateira.

A Formação Rio da Batateira aflora em todo o Vale, se inicia por bancos de arenitos fluviais médios a grosseiros gradando para arenitos médios a finos até siltitos argilosos. Juntamente com a Formação Missão Velha, constitui um dos principais aqüíferos da região, enquanto o armazenamento na Formação Mauriti é limitado a fendas e fraturas.

A região é abastecida quase exclusivamente por água subterrânea, através de um conjunto de mil oitocentos e trinta e cinco poços cadastrados (MONT'ALVERNE et al., 1995) que exploram água das três diferentes zonas aqüíferas, muitos deles de mais de um aqüífero, frequentemente sem uma identificação do sistema explorado.

ANÁLISE FATORIAL

Os métodos fatoriais (CAILLEZ & PAGES, 1976 e VOLLE, 1985) têm em comum as seguintes etapas:

- construção de uma nuvem de pontos ponderados num espaço vetorial kdimensional, dispostos sob a forma de matriz;
- definição de uma métrica para medir as distâncias entre os pontos neste espaço;
- cálculo da inércia dessa nuvem;
- determinação de eixos (fatores) que maximizem a inércia da nuvem na base formada por esses eixos;
- representação gráfica.

Os principais métodos fatoriais são a análise de componentes principais (HOTELLING, 1933) que utilizada a métrica euclidiana e a análise de correspondências (BEZENCRI, 1973) que é utilizada quando a nuvem de pontos é descrita por um conjunto de variáveis qualitativas e é um método de grande poder descritivo, uma vez que a métrica utilizada para medir distâncias entre os pontos leva em consideração o caráter probabilístico dos dados. Com base nessas características, o método fatorial escolhido foi a análise de correspondências. Neste trabalho, foi também utilizada a análise discriminante que possui a propriedade de separar em classes os dados de entrada e

permite, através do cálculo da inércia entre e intra classes, entender até que ponto essas classes (grupos) são diferenciadas.

Uma vez que a coleta de dados representativos está completa para todas as variáveis (p) e poços amostrados (n), estes dados podem ser representados por uma matriz [x] de dimensão k = pxn.

$$x_{i} = \begin{pmatrix} x_{i}^{1} \\ x_{i}^{2} \\ \vdots \\ x_{i}^{p} \end{pmatrix} \quad i = 1, 2, ..., n$$

Sem nenhuma transformação matemática, é difícil identificar correlações entre as variáveis e os poços amostrados, mas essa matriz pode ser utilizada como entrada para identificação de fatores do método estatístico.

O primeiro eixo fatorial é a direção do espaço R^P dada por um vetor unitário (u) que maximiza a inércia I, definida por

$$I = u^T V u$$

onde, V é a matriz quadrada pxp de termo geral $v_{jj} = \sum_{i} x_{i}^{j} x_{i}^{j'}$

sob a restrição u^Tu = 1.

Os eixos fatoriais são determinados pelos multiplicadores de Lagrange, determinando os extremos de:

$$L = v^{T} V u - \mathbf{l} u^{T} u$$
$$\frac{\partial L}{\partial u} = 2(V u - \mathbf{l} u) = 0$$
$$V u = \mathbf{l} u$$

O primeiro eixo fatorial é o vetor próprio u_1 correspondente ao maior valor próprio λ_1 de V; o segundo eixo fatorial corresponde ao segundo maior autovalor, e assim por diante. A representação gráfica dos resultados é uma representação plana da projeção da nuvem sobre planos definidos por pares de eixos fatoriais.

A análise das correspondências é realizada seguindo as etapas descritas, utilizando como métrica a "distância do χ^2 ".

Na análise fatorial discriminante, a cada observação, no caso um poço amostrado, ao qual correspondem medidas das variáveis pmC, δ^{18} O, CE, é atribuído um caractere dentro de um grupo de caracteres (aqüífero de origem). A análise discriminante utiliza o conjunto de sub-nuvens a fim de saber se estas sub-nuvens se distinguem umas das outras no espaço em que estão imersas, ou, ao contrário, o nível de interseção entre elas é tal que não permite uma discriminação entre elas.

Os softwares utilizados foram o ADDADEXE com as subrotinas dos programas da análise fatorial e o SAS como programa de saída de dados.

MEDIDAS ISOTÓPICAS

As análises de carbono-14 nos carbonatos dissolvidos nas águas subterrâneas permitem identificar o tempo ocorrido desde que a água deixou de estar em equilíbrio com a atmosfera, ou seja, transcorrido desde sua infiltração no aqüífero. Para obter esta informação, a atividade do carbono-14 medida na amostra é comparada com a atividade medida em um padrão representativo da atmosfera.

Os resultados podem ser expressos em termos de tempo ("idade de radiocarbono") ou em percentagem do carbono moderno (pmC), definido por:

$$pmC = \frac{A_a}{A_p} x100$$

que é o parâmetro utilizado neste trabalho.

A_a e A_p são, respectivamente, as atividades específicas da amostra e do padrão (CLARK & FRITZ, 1997). As medidas foram feitas com detetor proporcional a gás do Laboratório de carbono-14 da UFC.

As concentrações de oxigênio-18 são medidas em comparação com um padrão e expressas em delta por mil (δ ‰) definido por:

$$\boldsymbol{d}^{18}O(^{o}/_{oo}) = \left[\frac{(^{18}O/^{16}O)_{amostra}}{(^{18}O/^{16}O)_{padrão}} - 1\right] x 10^{3}$$

Onde ¹⁸O/^{16O} é a razão isotópica.

O padrão utilizado para medidas de oxigênio-18 é o SMOW ("Standard Mean Ocean Water"). Os valores de δ^{18} O fornecem informações sobre a "história" da água e sua

procedência, pois dependem, entre outros, do clima (temperatura, pluviosidade) na época de recarga, da elevação do local de chuva e de uma eventual evaporação ocorrida antes da recarga do aqüífero CLARK & FRITZ, 1997).

RESULTADOS E DISCUSSÕES

A tabela 1 apresenta a localização geográfica, medidas de carbono-14 (pmC), de oxigênio-18 (δ^{18} O) e dados de condutividade elétrica (CE) dos trinta e um poços amostrados e a classificação de cada um deles em um grupo de acordo com o modelo fenomenológico proposto por SANTIAGO et al. (1997) que separa o conjunto de dados em quatro grupos de armazenamento subterrâneo:

- Grupo 1, do qual pertencem nove poços que captam água da Formação Rio da Batateira, que é um aqüífero livre, portanto com valores de oxigênio-18 da ordem do valor das chuvas atuais, com os maiores valores de pmC e os mais baixos valores de condutividade elétrica.
- Grupo 2, onde estão doze poços que captam águas de mistura dos aqüíferos Rio da Batateira e Missão Velha.
- Grupo 3, ao qual pertencem seis poços que captam água somente da Formação Missão Velha, na área de afloramento e na área confinada.
- Grupo 4, ao qual pertencem quatro amostras provenientes da Formação Mauriti, que apresentam os menores valores de pmC, indicando águas mais antigas e os mais altos valores de condutividade elétrica.

De acordo com a tabela 1, no Grupo 1 os valores de oxigênio-18 estão entre -3,0 ‰ e -3,3 ‰ (da ordem do valor da chuva na região), entre -3,2 ‰ e -3,9 ‰ no Grupo 2, entre -3,2 ‰ e -4,3 ‰ no Grupo 3 e entre -2,9 ‰ e -3,8 ‰ no Grupo 4. Os valores do pmC no Grupo 1 estão entre 66,6 e 124,8, entre 30,3 e 99,2 no Grupo 2, entre 28,1 e 93,2 no Grupo 3 e entre 3,3 e 99,1 no Grupo 4. Os valores de condutividade elétrica no Grupo 1 estão entre 98 μ S/cm e 229 μ S/cm, entre 213 μ S/cm e 522 μ S/cm no Grupo 2, entre 349 μ S/cm e 456 μ S/cm no Grupo 3 e entre 602 μ S/cm e 976 μ S/cm no Grupo 4.

Os resultados da análise das correspondências dos 31 poços mostraram que o eixox, que é o primeiro eixo fatorial, acumula 99,4 % da inércia total. Este alto valor da inércia indica que o conjunto dos dados pode ser interpretado apenas por este eixo, que no gráfico da figura 2 está dividido nas faixas A, B, C e D associadas à diferentes tipos de armazenamentos. Nesta figura, as variáveis, representadas por quadrados, e as observações, representadas por círculos, estão sendo mostradas simultaneamente. À esquerda aparece a variável pmC, à direita a variável condutividade elétrica e a variável oxigênio-18 na parte central, mais afastado do eixo. Estas posições significam:

- Os poços da esquerda, com os mais altos valores de pmC, correspondem à águas mais recentes, estão melhor representados pelos valores de pmC;
- Os poços da direita, com os mais altos valores de CE, estão melhor representados pelos valores de CE;
- 3. A variável oxigênio-18 influi igualmente em todos os poços observados.

N ^⁰	Local - Município	Lat. S	Long. W	δ ¹⁸ Ο	¹⁴ C	CE	Grupo
			<u> </u>	(°/ ₀₀)	(pmC)	(µS/cm)	
P5	R. Macacos 2 - Jz	7°13'37"	39°18'26"	-3,1	74,6 ± 0,9	168	1
P26	Cj. Mirandão -Ct	7°14'11"	39°23'51"	-3,0	$91,4 \pm 0,8$	198	1
P27	Lagoa Seca 10-Jz	7°14'51"	39°19'19"	-3,3	$80,8 \pm 0,5$	98	1
P28	Lagoa Seca,11-Jz	7°14'56"	39°19'22"	-3,3	$66,6 \pm 0,5$	186	1
P29	Lagoa Seca,16-Jz	7°14'34"	39°18'51"	-3,0	88,7 ± 0,6	182	1
P34	R.Macacos 2a -Jz	7°13'38"	39°18'22"	-3,2	124,8 ± 0,9	229	1
P40	Lagoa Seca 17-Jz	7°14'23"	39°18'44"	-3,1	$80,5 \pm 0,6$	162	1
P47	Cafundó 5 - Ct	7°14'26"	39°24'20"	-3,0	98,8 ± 0,8	183	1
P55	S.R. do Novo -Ct	7°13'49"	39°25'37"	-3,1	$104,2 \pm 1,1$	144	1
P4	Lagoa Seca, 9 - Jz	7°14'27"	39°19'22"	-3,3	$64,2 \pm 0,7$	291	2
P6	R.Macacos,8 -Jz	7°12'36"	39 [°] 18'08"	-3,9	$35,4 \pm 0,6$	522	2
P10	Nº 2 -MV	-	-	-3,6	$30,3 \pm 0,4$	375	2
P19	St S. Pedro -Bb	7°17'50"	39 [°] 17'12"	-3,2	99,2 ± 0,5	226	2
P33	Barro Branco -Bb	7°18'50"	39°15'22"	-3,4	88,0 ± 0,8	288	2
P35	R.Macacos 3 - Jz	7°13'35"	39 [°] 18'12"	-3,2	92,0 ± 0,7	243	2
P36	R. Macacos 4 -Jz	7°13'25"	39°18'13"	-3,4	78,2 ± 0,5	291	2
P38	R. Macacos 7 -Jz	7°12'46"	39°18'20"	-3,2	75,1 ± 0,7	281	2
P39	Lagoa Seca 14-Jz	7°14'38"	39°19'03"	-3,5	61,0 ± 0,5	299	2
P58	R.Macacos, 1 -Jz	7°13'48"	39°18'24"	-3,4	77,5 ± 0,7	258	2
P71	Lagoa Seca,12-Jz	7°15'08"	39°19'21"	-3,4	72,4 ± 1,1	253	2
P72	Lagoa Seca,13-Jz	7°15'20"	39°19'23"	-3,5	79,1 ± 0,7	213	2
P9	Alto Alegria-Bb	7°18'27"	39°17'46"	-3,2	93,2 ± 0,7	349	3
P31	Usina 1 -Bb	7°18'08"	39°14'09"	-3,2	$84,5 \pm 0,7$	363	3
P37	R. Macacos 5 -Jz	7°13'14"	39°18'15"	-3,6	$48,9 \pm 0,4$	380	3
P48	Abaiara - IavAb	7°21'10"	39°02'47"	-3,8	$44,9 \pm 0,6$	417	3
P53	Bela Vista -Bb	7°19'40"	39°17'46"	-4,3	28,1 ± 0,5	456	3
P59	R.Macacos, 6 -Jz	7°13'02"	39 [°] 18'17"	-3,6	54,2 ± 1,0	438	3
P2	N ^º 2 -NO	-	-	-3,4	$69,2 \pm 0,6$	622	4
P3	Baixio, 3 -NO	7°06'58"	39°41'19"	-3,8	$3,3\pm0,4$	976	4
P42	SESI -Ct	7°13'37"	39°23'46"	-3,1	99,1 ± 0,7	639	4
P44	Hp.S.Vicente -Bb	7°18'39"	39°18'03"	-2,9	$90,8\pm0,8$	602	4

Tabela 1 - Dados de entrada da análise fatorial estatística. Jz: Juazeiro do Norte, Ct:Crato, MV: Missão Velha, Bb: Barbalha, Ab: Abaiara e NO: Nova Olinda.

Figura 2. Representação plana da análise das correspondências.

Os poços do Grupo A da análise das correspondências pertencem ao Grupo 1 do modelo fenomenológico sendo, portanto, o Grupo A equivalente ao Grupo 1. O Grupo B eqüivale ao Grupo 2, do qual fazem parte onze poços embora contenha quatro poços do Grupo 1 e dois poços do Grupo 3. O Grupo C eqüivale ao Grupo 3 contendo também dois poços do Grupo 2 e três poços do Grupo 4. O Grupo D eqüivale ao Grupo 4. Portanto, os Grupos B e C mostram pequenas diferenças, quando comparados com os Grupos 2 e 3, que representam misturas de águas de diferentes zonas aqüíferas.

As discrepâncias observadas entre os grupos estatísticos e do modelo fenomenológico são esperadas porque a análise das correspondências, que é um modelo puramente matemático, não distingue as misturas que ocorrem nos Grupos 2 e 3 do modelo fenomenológico e também não descreve a complexidade da geologia por causa do fraturamento tectônico.

Como as águas que alimentam as diferentes zonas aqüíferas são provenientes das chuvas e têm os mesmos valores numéricos para os parâmetros pmC, δ^{18} O e CE, a análise das correspondências não distingue áreas de recarga dos diferentes aqüíferos.

Para associar características geológicas a cada poço, foi feita também análise discriminante em uma dimensão e em duas dimensões, dos mesmos dados da análise das correspondências.

Na análise discriminante são escolhidas as variáveis que mais influenciam o momento de inércia, procurando correlacioná-las para substituir duas ou mais variáveis por uma nova variável. Aplicando o método em uma dimensão a esse conjunto de dados, o eixo considerado está relacionado com a condutividade elétrica e em duas dimensões com a condutividade elétrica e o oxigênio-18.

O Quadro 1 apresenta a aferição da classificação dos poços através da análise discriminante em uma dimensão. Os resultados indicam que 87% dos poços são bem classificados nos quatro grupos. A Figura 3 mostra que os grupos estão separados e que há uma marcante distinção do Grupo 4, que representa armazenamento em fraturas, enquanto os demais representam águas armazenadas em sedimentos.

Quadro 1. Aferição da classificação dos poços através da análise discriminante em uma dimensão.

	Aferição								
Origem	G1	G2	G3	G4					
G1	9	0	0	0					
G2	2	8	2	0					
G3	0	0	6	0					
G4	0	0	0	4					

O Quadro 2 apresenta a aferição da classificação dos poços através da análise discriminante em duas dimensões e mostra que 74% dos poços são bem classificados através dos quatro grupos. Na figura 4 observa-se a distinção entre os Grupos, especialmente o Grupo 4, como mostrou também a análise em uma dimensão.

Quadro	2.	Aferição	da	classificação	dos	poços	através	da	análise	discriminante	em	duas
	(dimensõe	es.									

	Aferição								
Origem	G1	G2	G3	G4					
G1	8	1	0	0					
G2	3	7	2	0					
G3	1	1	4	0					
G4	0	0	0	4					

Figura 4. Representação da análise discriminante em duas dimensões.

CONCLUSÕES

A análise fatorial mostrou-se eficaz na identificação de diferentes sistemas de armazenamentos subterrâneos mesmo quando utilizada para um conjunto complexo de amostras de águas provenientes de mistura de aqüíferos.

A análise das correspondências mostrou que os dados de pmC, CE e δ^{18} O utilizados neste trabalho são bem correlacionados necessitando apenas um eixo fatorial para representá-los.

A análise discriminante do conjunto de poços estudados produziu quatro grupos distintos, com uma concordância de mais de 80% com os quatro grupos que tinham sido identificados para o mesmo conjunto, utilizando isótopos ambientais, medidas de condutividade elétrica e perfis de perfuração dos poços, na descrição de um modelo fenomenológico regional para os aqüíferos do Vale do Cariri.

AGRADECIMENTOS

Os autores agradecem à Prefeitura municipal de Juazeiro do Norte, pela hospitalidade e ao Departamento de Física, pelo apoio logístico.

REFERÊNCIAS

- BEZENCRI, J.P. 1933 L'analyse des données correspondances. Ed. Dunod, 1973, França.
- CAILLEZ, F. & PAGES, J.P. 1976 Intróduction à analyse des données. Ed. SMASH, França.
- CLARK, I. & FRITZ, P. 1997 Environmental isotopes in Hydrogeology. Lewis Publishers, New York, 1997.
- DAVIS, J.C. 1984 Statistics and data analysis in Geology, 2nd edn. Wiley, New York, 646p.
- DEVEREL, S.J. 1989 Geostatistical and principal components analysis of ground water chemistry and soil-salinity data, San Joaquin Valley, California. Proceedings of the Baltimore Symposium, May 1989, Regional Characterisation of Water Quality, IAHS Publ. 182, p. 11-18.
- DNPM, 1996 Mapa Geológico da Bacia Sedimentar do Araripe. Equipe Executora: AlaricoA.F. Mont'alverne, Francisco C. Ponte, José Robinson A. Dantas e Carlos F. Lopes,Recife, PE.
- HOTELLING, H. 1933 Analyses of a complex and statistical variables into principal components. J. Educ. Psych., vol. 24, 417-441, 498-520.
- MELLOUL, A. & COLLIN, M. 1992 The 'principal components' statistical method as a complementary approach to geochemical methods in water quality factor identification; application to the Coastal Plain aquifer of Israel. Journal of Hydrology, vol. 140, p. 49-73.

- MONT'ALVERNE, A.A.F., DANTAS, J.R.A.; MELO JUNIOR, A.H., MONTEIRO, E.T., LIMA, A.A.; PONTE, J.S.A.; PONTE, F.C. & COSTA, W.D. 1995 A bacia sedimentar do Cariri. Recife, DNPM, 1995.
- SANTIAGO, M.F.; SILVA, CMSV.; MENDES FILHO, J.; FRISCHKORN, H. 1997 Dynamics of underground water in the Cariri/Ceará Brazil traced by environmental isotopes. *Radiocarbon* vol. 39, nº 1, p. 49-60.
- SAAD, M. & TURGEON, A. 1988 Aplication of principal components analysis to long-term reservoir management. Water Resour. Res., vol. 24, n^o 7, p. 907-912.
- VOLLE, M. 1985 Analyse des données. Ed. Economica, França.