O SISTEMA HIDROGEOLOGICO DOS CARTES BAMBUÍ
NA REGIÃO DE IRECÊ-BA

ARÔ MEDEIROS GUERRA*

RESUMO--No presente trabalho é focalizado o modelo de funcionamento conceitual do aquífero cárrstico Bambuí na Chapada de Irecê-BA, baseando-se na evolução dos processos de carstificação atuantes na área. Uma avaliação geral com base na estimativa das reservas reguladoras é apresentada. Mapas como os de capacidade específica, potenciometrício e de fluxos compõem a avaliação do sistema aquífero.

ABSTRACT--This paper deals with about the conceptual model of functioning for the karstic rocks in Irecê Plateau-Bahia State. It is based on karstifications evolutions process in action on this area. A general evaluation of aquifer capacity, based in estimation of recharges is presented. Maps of specific capacity, hydraulic head and groundwater flow, have been done aiming the evaluation of aquifer system.

INTRODUÇÃO

Os carstes, em decorrência de suas formas particulares de recarga, circulação e armazenamento se distinguem dos demais sistemas aquiferos, sendo, provavelmente, de todos os mais complexos. Por serem os calcários rochas solúveis a formação e evolução dos carstes resulta da ação da água sobre a rocha, ou mais especificamente, da integração dos fatores água, composição química da rocha e elementos estruturais. A água é considerada o elemento ativo do processo. Do seu volume e agressividade, dependem, em parte, a velocidade de evolução dos processos de carstificação. A qualidade química da rocha diz respeito à sua maior ou menor solubilidade. Assim é que, quanto mais pura for o calcário, maior será sua solubilidade. Dos elementos estruturais, as rupturas ou fissuras, desempenham o papel mais importante, por facilitar a penetração da água no corpo rochoso, aumentando a superfície de contato água/rocha. As falhas e grandes fissuras se transformam preferencialmente nos grandes canais de circulação subterrânea.

O comportamento e o estágio evolutivo do sistema cárrstico influenciam nas características de recarga, armazenamento e circulação do aquífero. Desta forma, o conhecimento hidrogeológico de um aquífero cárrstico implica necessariamente no entendimento e conhecimento do seu comportamento cárrstico.

* Professor de Hidrogeologia da U.F.B.A.
Geólogo da Cla. Eng. Rural da BA - CERB - Av. Paralela, s/n?
Centro Administrativo da Bahia - Salvador - CEP. 40.000.
LOCALIZAÇÃO DA ÁREA

A área objeto de nosso estudo, 9.510 km², localiza-se na região Central da Bahia, e está inserida no polígono compreendido pelas seguintes coordenadas geográficas:

Lat. Sul Long. W.Gk
11°90'00'' 41°20'00''
12°92'00'' 42°91'00''

ROTEIRO METODOLÓGICO

Este trabalho foi desenvolvido obedecendo-se a três fases distintas a saber:

1ª fase: levantamento e análise do material bibliográfico.
2ª fase: desenvolvimento das atividades como: fotointerpretação, destinada ao mapeamento das principais feições cársticas de superfície; Coleta de amostras de rochas para análises químicas; implantação de uma rede de poços para medições das variações de nível hidrostático do aquífero; Cadastramento dos poços tubulares e outros pontos de água. Foram cadastrados nesta fase cerca de 800 poços tubulares com coletas de informações sobre os níveis estáticos, dinâmicos, profundidades, vazões, volumes explorados, etc.

3ª fase: nesta fase, realizou-se a análise e integração dos resultados. Com auxílio do método estatístico de análise de tendência, utilizando-se o programa SYMAP (Synagraphic Mapping System), Shaffer (1976) foram construídos os mapas de isolinhas e de tendência apresentados, compondo-se assim com os demais gráficos e dados a base interpretativa do sistema aquífero.

ELEMENTOS FÍSIO-CLIMÁTICOS

As precipitações na área são sempre mal distribuídas, com o período chuvoso concentrando-se de novembro a abril. A ocorrência de estações mais prolongadas são frequentes. A fig. 01 mostra o mapa de isoíetas anuais da área. Através deste, vemos que as precipitações decrescem de sul para o centro norte da área, com a precipitação média na Chapada Calcária em torno de 600mm / ano.

Os outros dados climatológicos encontram-se resumidos no Quadro 01, registrados na estação climatológica de Irecê.

Morfologia-- O "plateau" calcário de Irecê é uma unidade geomorfológica bem caracterizada por seu relevo tabular, suavemente
FIG. 01 - MAPA DE ISOIETAS ANUAIS - Período 1964 - 1977
QUADRO 01 - DADOS CLIMATOLÓGICOS
ESTAÇÃO CLIMATOLÓGICA DE IRECE

Lat. 11920'00"
Long. 41952'10"

<table>
<thead>
<tr>
<th>NATUREZA DOS DADOS</th>
<th>MÉDIAS ANUAIS</th>
<th>JAN</th>
<th>FEV</th>
<th>MAR</th>
<th>ABR</th>
<th>MAI</th>
<th>JUN</th>
<th>JUL</th>
<th>AGO</th>
<th>SET</th>
<th>OUT</th>
<th>NOV</th>
<th>DEZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precipitação (mm)</td>
<td>585,1</td>
<td>108,2</td>
<td>67,3</td>
<td>101,2</td>
<td>38,3</td>
<td>3,5</td>
<td>2,9</td>
<td>0,4</td>
<td>0,4</td>
<td>1,7</td>
<td>25,5</td>
<td>121,9</td>
<td>113,8</td>
</tr>
<tr>
<td>Período (1945 - 1970)</td>
<td></td>
</tr>
<tr>
<td>Temperatura (°C)</td>
<td>23,4</td>
<td>24,7</td>
<td>24,3</td>
<td>24,5</td>
<td>23,8</td>
<td>22,7</td>
<td>21,6</td>
<td>20,6</td>
<td>21,7</td>
<td>23,5</td>
<td>24,7</td>
<td>24,9</td>
<td>24,1</td>
</tr>
<tr>
<td>Insolação (hs)</td>
<td>3,037,3</td>
<td>276,4</td>
<td>230,7</td>
<td>253,6</td>
<td>244,8</td>
<td>239,1</td>
<td>234,2</td>
<td>266,8</td>
<td>282,8</td>
<td>274,9</td>
<td>246,6</td>
<td>229,6</td>
<td>257,8</td>
</tr>
<tr>
<td>Umidade Relativa (%)</td>
<td>65,4</td>
<td>66,3</td>
<td>69,0</td>
<td>70,3</td>
<td>68,1</td>
<td>67,3</td>
<td>68,4</td>
<td>65,3</td>
<td>59,6</td>
<td>59,3</td>
<td>56,0</td>
<td>65,7</td>
<td>64,9</td>
</tr>
<tr>
<td>Veloc. dos Vento (m/s)</td>
<td>3,7</td>
<td>3,5</td>
<td>3,2</td>
<td>2,9</td>
<td>2,8</td>
<td>4,5</td>
<td>4,0</td>
<td>4,6</td>
<td>4,5</td>
<td>4,9</td>
<td>3,8</td>
<td>3,1</td>
<td>3,3</td>
</tr>
<tr>
<td>Evaporação Classe A (mm)</td>
<td>1,179</td>
<td>137,5</td>
<td>150,5</td>
<td>107,8</td>
<td>126,2</td>
<td>153,7</td>
<td>144,4</td>
<td>165,4</td>
<td>221,3</td>
<td>226,0</td>
<td>257,9</td>
<td>236,6</td>
<td>249,9</td>
</tr>
<tr>
<td>Período (1980 - 1982)</td>
<td></td>
</tr>
<tr>
<td>Evapo-Transpiração Potencial (mm) - *Hargreaves</td>
<td>1,613</td>
<td>164</td>
<td>145</td>
<td>140</td>
<td>119</td>
<td>105</td>
<td>92</td>
<td>97</td>
<td>119</td>
<td>134</td>
<td>170</td>
<td>171</td>
<td>157</td>
</tr>
</tbody>
</table>

* Hargreaves (1974)

Fonte: INMET - 4º Distrito
LEGENDA

QUaternário-Terciário

Tqd Depositos detriticos

PROTEROZOICO SUPERIOR
Grupo Bambui

Bs Conjunto Carbonatico
Pelitico nao dividido

Bbe Formacao Bebedouro

PROTEROZOICO MEDIO
Grupo Chapada Diamantina

Em Formacao Marra do Chapoeu

Ecb Formacao Caboclo

Et Formacao Tombador

Fonte: Modificado do Mapa Geologico de Estado da Bahia
SME/CPM-1978

Fig.03 — ESBOÇO GEOLÓGICO DA CHAPADA DE IRECÉ
ondulado, oscilando em torno da cota de 700m. Em decorrência da dissolução carstica, são comuns feições típicas como a ausência da rede de drenagem superficial, estruturas de desabamento e aço modação como os vales cegos, dolinas etc. Essas feições são tão mais pronunciadas e exibem formas mais maduras à medida que se avança em direção sul, bem como, nas faixas de contato. Contras-

tando com esta unidade, aparecem os chapadões quartzíticos do

Grupo Chapada Diamantina formando escarpas íngremes ao longe dos contatos leste, sul e oeste, em cotas que podem-se elevar à casa dos 1.100 metros.

CONTEXTO GEOLOGICO

O Grupo Bambuí na Chapada de Irecê é representado por duas formações distintas, de idade Precambriana Superior, denominadas da base para o topo de Bebedouro e Salitre, repousando discordan-
temente sobre metassedimentos do Grupo Chapada Diamantina, (Fig. 03).

Formação Bebedouro——F caracterizada por metassedimentos síl-
tico-argilosos associados a lentes contínuas de metagrauvaças con-
glomeráticas, com seixos angulares de diversos tamanhos e tamanhos

variáveis. Espessura variável, até um máximo de 70m. Tem como

principal característica a presença de um nível conglomerático, con-
glomerado Lajes (Kegel, 1959). Trata-se de um conglomerado po-

ligêssico, de matriz, coloração e granulometria variáveis (Brito-

Naves 1967). É considerado de origem glacial, (Montes et alii 1981),
e correlacionável às formações Jequitai, Macaúbas e Carrancas,

(Dardenne,1978), base do Grupo Bambuí nos Estados de Goiás e Mi-

nas Gerais.

Formação Salitre——Trata-se de uma sequência essencialmente

carbonática, constituída de calcários cinza, microcrystalinos,

m estratificados, com níveis dolomíticos e intercalações argi-

losas. É superposta concordantemente à Formação Bebedouro. Sua

espessura ainda não foi bem definida, devendo ser bastante varia-

vel.

Feições Estruturais——Temos nos domínios da Chapada de Irecê

como feição estrutural mais marcante, dois estilos de dobramen-

tos distintos: ao sul, o grande sincinal de Palmeiras, de eixo

norte-sul, concordante com a estrutura Regional da Chapada Dia-

mantina; e ao norte, os dobramentos de eixos leste-oeste com do-
bras de forte mergulho e que se intensificam à medida que se

aproximam do limite norte. Essas estruturas, completamente dis-

crepantes do estilo regional da Chapada Diamantina vão se tornar

do suave para sul até se confundir com o estilo regional norte-sul.

Esse comportamento é explicado como resultado de uma tec-tó-

nica de deslizamento gravitacional contra a falha do Morro do Pe-

me, limite norte do chamado Bloco de Irecê. Adaptada ao modelo es-

trutural temos a rede fissural da área. Na porção intermediária

e norte sobressaindo as direções N70-90E e N70-90W, que são dire-

ções de controle nitidamente longitudinal, adaptadas ao estilo

mais intensamente dobrado dos calcários. Secundariamente apare-

cem bem representadas as direções adaptadas ao sentido diagonal de

cisalhamento e transversal. Na extremidade sul da área aparecem

destaque as direções N10-20W, concordante com a direção geral de

acamamento do pacote nesta área.
COMPORTAMENTO HIDROGEOLOGICO

O quadro hidrogeológico de uma região cárstica pode ser avaliado em função da evolução dos processos de carstificação, que por sua vez, dependem dos três elementos fundamentais que são: a água, a rocha (composição mineralógica) e os elementos estruturais.

A água--É o chamado elemento ativo do processo de carstificação. Do seu volume e de sua maior ou menor agressividade, depende, em parte, a velocidade de evolução do processo, segundo as relações de equilíbrio:

\[
\begin{align*}
\text{CO}_2(g) & \rightleftharpoons \text{CO}_2(aq.) \rightleftharpoons \text{CO}_2(s) \\
\text{CO}_2(aq.) + \text{H}_2\text{O} & \rightleftharpoons \text{H}_2\text{CO}_3 (\text{ácido carbônico}) \\
\text{H}_2\text{CO}_3 + \text{CaCO}_3 & \rightleftharpoons \text{Ca (CO}_3\text{H})_2 \\
\text{Ca (CO}_3\text{H})_2 & \rightleftharpoons \text{CaCO}_3 \downarrow + \text{H}_2\text{O} + \text{CO}_2
\end{align*}
\]

Na Chapada de Irecê as águas que interagem no sistema provêm basicamente das chuvas que caem diretamente sobre a superfície cárstica e de contribuição subterrânea, através dos metassedimentos do Grupo Chapada Diamantina, restrita às zonas de contato. Conforme mostrado no mapa de isoietas anuais, Fig. 01, as precipitações tendem a diminuir para norte e centro da área, aumentando gradativamente para sul e em direção aos contatos leste e oeste. Na região sul, Iraquara, temos precipitações mais regulares e superiores a 700 mm/ano, o mesmo acontecendo nas bordas leste e oeste que, além das precipitações diretas, recebem influência da contribuição subterrânea dos Quartzitos Chapada Diamantina. Segundo Lladó (1970), precipitações da ordem de 600 – 400 mm/ano são consideradas deficientes para os processos de carstificação.

A rocha--A composição química ou mineralógica da seqüência carbonática Bambuí na Chapada de Irecê tem uma composição variável. A presença de dolomitos e intercalações argilosas são comuns. Na falta de um mapeamento geológico em detalhe adequado a este tipo de análise, que nos fornecesse a distribuição exata das várias unidades estratigráficas, com suas características mineralógicas, utilizou-se dos mapas de isoteores e superfície de tendência construídos a partir dos teores em CaO de 55 amostras coletadas na área (Fig. 04 A e B). Como resultado verificou-se uma baixa amplitude de variação nos teores de CaO, não havendo nenhuma tendência acentuada de variação regional, onde se conclui que este fator exerce sua influência nos processos de carstificação de maneira mais localizada, não havendo grandes influências regionalizadas.

Fatores Estruturais--Dos fatores estruturais, as rupturas, que representam as falhas e diaclases em geral, desempenham o papel mais importante dos fatores geológicos no desenvolvimento do carste e no seu comportamento hidrogeológico. Pode-se dizer que, quanto maior a densidade de fissuras, maior será a ação da água sobre a rocha. As grandes fissuras ou falhas se transformam preferencialmente, nos grandes canais de dissolução, por onde circulam as águas subterrâneas. Em superfície, a rede fissural representa as próprias formas embrionárias de absorção. Por elas se iniciam preferencialmente os processos de carstificação. Além
A - MAPA DE ISOLINHAS DE CaO NOS CALCÁRIOS
(Teores em %)

B - SUPERFÍCIE DE TENDÊNCIA DE GRAU 4 DE CaO
NOS CALCÁRIOS
FIG. - 05
MAPA DE FRATURAS
DENSIDADE
km / 100km²

Fonte: Guerra et alii (1983)
do mais, nas zonas onde o carste se apresenta pouco desenvolvido como ocorre na porção norte da Chapada de Irecê, o sistema aquífero apresenta-se misto, fissural/cárstico.

Na Fig. 05 é mostrada a distribuição da densidade de fraturas. Verifica-se que as mais baixas densidades se concentram na porção norte da área. Na Fig. 06 A é mostrado o diagrama de orientação das fraturas em três diferentes regiões da Chapada Calcária. A Fig. 06 B mostra a adaptação preferencial das feições cársticas superficiais às fraturas. Verifica-se uma forte adaptação ao estilolongitudinal de direção aproximada E-W nas regiões norte e intermediária e N-S na região sul.

A maior presença dos grandes fissuramentos se faz sentir ao longo das zonas de contato com o Grupo Chapada Diamantina, especialmente ao lado leste e na zona intermediária ao longo do vale do Rio Jacaré. São zonas preferenciais de implantação da rede de drenagem subterrânea, além da possibilidade de carstificação até gir mais profundas. Sabe-se que a maior ou menor intensidade de nesses processos de carstificação vão se deve, exclusivamente, à presença de um intenso fissuramento, entretanto, a maior profundidade destes níveis, e mesmo a implantação da rede de drenagem subterrânea (formas de circulação), estes são determinados preferencialmente por fatores estruturais.

O PANORAMA CÁRSTICO RESULTANTE

Como resultado da integração dos fatores água, composição química da rocha e elementos estruturais, temos na Chapada de Irecê um quadro cárstico em diferentes estágios evolutivos, especialmente na porção norte onde exibe um estágio pouco evoluído que poderíamos classificar de juvenil. Já ao sul e ao longo da faixa de contato com o Grupo Chapada Diamantina, especialmente ao lado leste, temos um carste em uma fase madura de desenvolvimento.

Ao norte, predomina um quadro morfológico constituído de dolinas esparsas, rasas e de pequeno porte, poucos sumidouros, presença marcante de formas embrionárias como os campos de lapiás. As formas de absorção são predominantemente primárias, ou seja, a rocha se comporta de maneira similar às rochas fissuradas comuns, em que as formas de absorção dominantes são juntas de estratificação, falhas e diaclases em geral.

Uma nítida graduação se observa à medida que se avança em direção ao sul da área onde a presença de formas mais evoluídas torna-se mais constante. Naquela área o processo de dolinaização torna-se mais intenso com o aparecimento de dolinas de porte maior e mais profundas, além de úvalas, sumidouros, vales cegos, grandes estruturas de desabamento, etc. O mesmo ocorre na zona de contato com o Grupo Chapada Diamantina, na borda oriental, especialmente, por efeito de uma maior disponibilidade do fator água, seu perifical (pluviometria) e subterrânea (contribuição dos quartzoitos Chapada Diamantina), aliado ao fator estrutural (falhamentos de contato) onde o carste apresenta-se bem desenvolvido, atingindo maiores profundidades. O resultado imediato seria uma maior disponibilidade de águas subterrâneas, facilitada naturalmente pelas melhores condições de armazenamento e recarga.
LEGENDA

- ISOLINHAS (m)
- LINHAS DE FLUXO
- CONTATO LITOLÓGICO
- DRENAGEM
- ESTRADA
- CIDADE

Fig. 07 — MAPA POTENCIOMÉTRICO

- pCB Grupo Bombuí (indiviso)
- pCq Grupo Chapada Diamantina (quartzitos)
CONDICIONAMENTO HIDROGEOLOGICO

Como foi citado, o comportamento e estágio evolutivo do sistema cártico influenciam nas características de recarga, condições de armazenamento e circulação. Assim sendo, formas de absorção bem desenvolvidas, além de assegurar boas condições de recarga, refletem o desenvolvimento em subsuperfície das formas de circulação e armazenamento. Na Chapada de Irecê, além da análise do comportamento e estágio evolutivo do sistema cártico, na concepção de funcionamento e avaliação do aquífero, utilizou-se de dados provenientes do cadastramento de cerca de 800 poços tubulares perfurados na área, donde se extraíu os dados potenciômétricos, de capacidade específica, profundidades etc.

POTENCIOMETRIA

As zonas de contato, tanto do lado oriental como do ocidental, se constituem na principal drenagem subterrânea por onde escodem as águas dos cársticos. A Fig. 07 – mapa potenciométrico, construído a partir de dados de níveis obtidos através de 226 poços tubulares, mostra claramente a tendência dominante da drenagem subterrânea no sentido dos quartzitos Chapada Diamantina, evidenciando a subordinação da mesma aos falhamentos de contato. Os gradientes de fluxo oscilam na faixa de 0,003 a 0,025, com valor médio em 0,008.

Na região Central, merece destaque a presença do vale do Rio Jacaré, por onde escodem toda água dessa região, de Barra do Mendes em direção a América Dourada, com fluxo preferencial no sentido SW-NE. A leste de Irecê, situa-se o principal alto potenciométrico da Chapada Calcária, donde os fluxos divergem radialmente em todos os sentidos. Na região de América Dourada, contudo, leste, situa-se o principal centro de convergência de fluxos.

Ao norte de Souto Soares, localiza-se o alto potenciométrico que funciona como divisor de águas entre as bacias dos rios São Francisco e Paraguacu. A partir de Souto Soares, a drenagem subterrânea se faz preferencialmente no sentido SE, convergindo para a fonte da Pratinha. Esta fonte tem uma descarga pontual em torno de 1.700 l/s.

As variações sazonais dos níveis hidrostáticos foram medidas em poços previamente selecionados e distribuídos pela área, utilizando-se aqueles não instalados e fora do alcance do raio de influência de outros em bombeamento. As medidas foram realizadas mensalmente, no período de fevereiro/80 a maio/82. Inicialmente, selecionou-se um número de 14 poços, 12 no calcário e 2 nos quartzitos, chegando-se ao final do período de observação com apenas quatro. O Quadro 02 mostra o resultado das medidas, onde se verifica que as oscilações de níveis são bem maiores nos cárticos do que nos quartzitos Chapada Diamantina. Nos cárticos, a maior variação anual 8,0 m foi observada no poço 801 em Rodagem, no ano de 1980, ficando a segunda maior variação para este mesmo poço, 6,32 m, no ano de 1981. A média geral foi de 3,3 m, para o período de 1980/81.

As variações nos níveis hidrostáticos resultam da recarga natural do aquífero, que, no caso, é função das precipitações e da permeabilidade-porosidade da rocha, em superfície e em subsuperfície.
Fig. 08 - CORRELAÇÃO ENTRE VARIAÇÕES POTENCIOMÉTRICAS E PRECIPITAÇÕES
<table>
<thead>
<tr>
<th>Nº</th>
<th>LOCALIDADE</th>
<th>PROFUNDIDADE</th>
<th>N.E. m</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>29.02.80</td>
<td>29.03.80</td>
<td>30.04.80</td>
</tr>
<tr>
<td>740</td>
<td>SALOBRO</td>
<td>10,224</td>
<td>9,753</td>
</tr>
<tr>
<td>734</td>
<td>UMBURANINHA</td>
<td>4,350</td>
<td>8,953</td>
</tr>
<tr>
<td>019</td>
<td>FAZ. DGA SORTE</td>
<td>5,456</td>
<td>5,003</td>
</tr>
<tr>
<td>324</td>
<td>ACHADO</td>
<td>6,240</td>
<td>6,239</td>
</tr>
<tr>
<td>822</td>
<td>AMÉRICA CURAÇÁ</td>
<td>2,054</td>
<td>4,192</td>
</tr>
<tr>
<td>813</td>
<td>SÃO RAFAEL</td>
<td>7,560</td>
<td>7,622</td>
</tr>
<tr>
<td>163</td>
<td>QUEIMADAS</td>
<td>-</td>
<td>2,932</td>
</tr>
<tr>
<td>801</td>
<td>RODAGEM</td>
<td>-</td>
<td>2,904</td>
</tr>
<tr>
<td>825</td>
<td>KM - 2</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Fig. 09 – CORRELAÇÃO ENTRE VARIAÇÕES POTENCIOMÉTRICAS E PRECIPAÇÕES

Fig. 10 – CORRELAÇÃO ENTRE VARIAÇÕES POTENCIOMÉTRICAS
PRECIPAÇÃO E EVAPORAÇÃO CLASSE - A

FONTE: Guerra (1986)
Dessa forma, é possível se estabelecer as recargas ou reservas reguladoras, conforme conceituação de Rebouças (1976), conhecendo-se a porosidade da rocha à altura da Zona de Flutuação Sazonal, (Sakalov - 1967, in Lladó-1970), ou mesmo conhecendo-se a porosidade média do aquífero.

As Figs. 08 e 09 mostram a relação existente entre as variações dos níveis potenciométricos e as precipitações em diferentes pontos da superfície cársica. Com exceção do poço representado na Fig. 09, América Dourada, todos apresentaram comportamento similar. Algumas conclusões significativas podem ser tiradas.

a) A elevação dos níveis potenciométricos é imediata às precipitações, o que indica infiltrações instantâneas e rápidas. No poço 813 - São Rafael, situado nos quartzitos, as reações foram retardadas em aproximadamente 30 dias.

b) Precipitações inferiores à casa dos 100mm mensais, não provocam reações nos níveis, a infiltração torna-se nula ou desprezível. Isto demonstra a importância do volume e da intensidade das precipitações.

c) No poço representado na Fig. 09, América Dourada, as reações dos níveis são imediatas, porém bastante pequenas o que significa reservatório subterrâneo de grande porte ou baixa taxa de infiltração. Em verdade este poço situa-se no vale do rio Jacaré em uma zona de intensa carstificação, o que significa que a primeira hipótese é certamente a verdadeira.

A Fig. 10, mostra a correlação entre o gráfico de variação dos níveis hidrostáticos, no poço de Achado, a precipitação e a evaporação classe A na estação climatológica de Irecê. O poço de Achado situa-se a 6 km de Irecê. Por esses gráficos verifica-se que os excedentes de água somente ocorrem nos picos de maior pluviometria, quando realmente, acontece infiltração efetiva.

RESERVAS REGULADORAS

Em aquíferos livres pouco profundos e de capacidade de armazenamento fraca o conhecimento das reservas reguladoras, (recarga), é de extrema importância, pois dela vai depender o rendimento do mesmo, sendo tão mais significativo quanto mais segura for a recarga.

Os cársicos Bambuí na Chapada de Irecê são aquíferos que se enquadrarem neste tipo. Suas reservas permanentes são modestas. O bombeamento intensivo de poços considerados de altas vazões tem comprovado esta afirmativa. Assim, poços como os da localidade de Lapão que abastecem a cidade de Irecê, considerados dos melhores, reduzem drasticamente suas vazões e baixam gradativamente seus níveis durante o período de estiagem. Fato idêntico acontece com todos os poços onde ocorrem bombeamentos intensivos.

Como base para os cálculos, adotou-se como dado de variações de níveis hidrostáticos, a média encontrada no biênio 1981/82, conforme Quadro 02 (3,3 metros). Como dado de porosidade foi considerado como ponto de partida, o valor médio de 3,22% encontrado por (Plata et alii, 1980), para a zona de saturação, em 48 poços da Chapada de Irecê, utilizando como método de determinação a perfilagem com traçadores radioativos. Nosso interesse está na zona de Flutuação Sazonal onde a porosidade é máxima, diminuindo gradativamente até o limite inferior da zona saturada, passando
Fig. 11 - MAPA DE ISOLINHAS DA DENSIDADE DE ÁREA COBERTA POR FEIÇÕES CÁSTICAS DE SUPERFÍCIE

Fig. 12 - MAPA DE CAPACIDADE ESPECÍFICA
pelo valor médio de 3,2%. Na base da zona saturada, os valores são próximos de zero. Considerando-se que as variações de nível, por efeito das flutuações sazonais, são muito pequenas em relação à espessura saturada, pode-se estimar como valor máximo, o dobro do valor médio, que seria a porosidade representativa da zona de Flutuação Sazonal, isto é, (6,4%).

A partir dos gráficos de variação dos níveis hidrostáticos nos poços de observação, verifica-se que a queda dos níveis, por efeito do escoamento subterrâneo, no período não chuvoso, é aproximadamente linear e se faz a uma taxa média aproximada de 0,47 m/mês. Deve-se considerar que mesmo durante os meses chuvosos, quando há uma subida relativa dos níveis por efeito da recarga, haveria uma queda relativa a uma taxa correspondente à observada no período não chuvoso. Admitindo-se o período chuvoso com duração média de 6 meses, esta queda atingiria 6 x 0,47 = 2,8 m. Dessa forma, para conseguirmos um valor real das variações anuais dos níveis, teremos que acrescer à média de 3,3 m medida em campo, o valor de 2,8 m. A amplitude de variação anual seria de 3,3 + 2,8 = 6,1 m. Se a porosidade estimada, 6,4% fosse contínua, meio aquífero homogêneo, teríamos 390,4 mm de recarga anual. Como nos calcaários a recarga se faz predominantemente através das formas cársticas de absorção, (dolinas, vales, etc), e como estas cobrem em média 6% da superfície, conforme mostrado no mapa de iso-linhas de área coberta por estas feições, (Fig. 11), pode-se estimar uma recarga efetiva média de 23,42 mm/ano, ou 3,9% da precipitação média, 600 mm/ano. Como a área coberta pelos cársticos é de 9.510 km², a reserva reguladora média será 223.10⁶ m³/ano ou 23.4.10³ m³/ano/km². Vale salientar que este valor pode ser considerado como mínimo, uma vez que pode haver alguma recarga através de fraturas e outras feições cársticas menores não mapeáveis na escala utilizada. O volume bombeado através dos poços, ano de 1981, quando se realizou este levantamento, foi de 3,22.10⁶ m³/ano o que representa 1,46% da reserva reguladora estimada. Assim, embora esta reserva nos pareça por demais modesta, seu nível atual de utilização ainda é extremamente reduzido. Além disso, sua utilização poderá ser melhor otimizada, já que através da drenagem subterrânea há concentrações em zonas preferenciais de convergência de fluxos. Através do mapa de capacidade específica (Fig. 10), pode-se facilmente visualizar estas áreas.

Correlacionando-se os mapas de capacidade específica, potenciometria e de densidade de área de feições cársticas superficiais, (Figuras 07, 11 e 12), verifica-se que as manchas de maior capacidade específica situam-se em zonas de convergência de fluxos, sendo as manchas de baixa capacidade específica zonas predominantemente de altos potenciometrícios ou mesmo de baixo Índice de carbonificação. As grandes áreas de recarga estão sempre relacionadas a áreas de alta carbonificação independente de se situarem em altos ou baixos potenciometrícios.

COMPORTAMENTO HIDROQUÍMICO

Uma das características fundamentais das águas subterrâneas dos cárticos Bambuí na Chapada de Irecê é a grande variação na composição química de um ponto para outro da área. No Quadro 03, é mostrado a composição química média e os respectivos valores
extremos dos principais componentes. Verifica-se também que as relações iônicas dominantes são do tipo rCl rHCO3 rSO4 (45\%); rHCO3 rCl rSO4 (42,8\%) e rCa rMg rNa (88\%); rMg rCa rNa (10\%); rNa rCa rMg (2\%).

Quadro 03 - Valores extremos e médios dos componentes principais das águas Bambuí - Chapada do Irecê

<table>
<thead>
<tr>
<th>VALORES EM mg/l</th>
<th>MÁXIMO</th>
<th>MÍNIMO</th>
<th>MÉDIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca^{2+}</td>
<td>4.500,0</td>
<td>4,1</td>
<td>215,0</td>
</tr>
<tr>
<td>Mg^{2+}</td>
<td>768,0</td>
<td>4,8</td>
<td>67,6</td>
</tr>
<tr>
<td>Na^{+}</td>
<td>1.205,0</td>
<td>4,1</td>
<td>30,4</td>
</tr>
<tr>
<td>K^{+}</td>
<td>96,0</td>
<td>1,1</td>
<td>5,9</td>
</tr>
<tr>
<td>Cl^{-}</td>
<td>8.770,0</td>
<td>4,0</td>
<td>305,2</td>
</tr>
<tr>
<td>SO_{4}^{2-}</td>
<td>1.659,0</td>
<td>3,5</td>
<td>142,8</td>
</tr>
<tr>
<td>HCO_{3}^{-}</td>
<td>898,1</td>
<td>9,0</td>
<td>359,5</td>
</tr>
<tr>
<td>NO_{3}^{-}</td>
<td>132,0</td>
<td>0,0</td>
<td>12,89</td>
</tr>
<tr>
<td>DUREZA (CO_{3}Ca)</td>
<td>2.878,0</td>
<td>245,0</td>
<td>882,0</td>
</tr>
<tr>
<td>STD</td>
<td>28.054,0</td>
<td>289,0</td>
<td>1.445,5</td>
</tr>
</tbody>
</table>

Considerando-se separadamente nos carstos a parte norte da parte sul da área, estabelecendo-se como limite a cidade de Irecê, tem-se significativas diferenças nas relações iônicas, conforme mostra o Quadro 04.

Quadro 04 - Relações iônicas das Águas Subterrâneas Bambuí - Chapada de Irecê

<table>
<thead>
<tr>
<th>NORTE DE IRECÊ</th>
<th></th>
<th>SUL DE IRECÊ</th>
</tr>
</thead>
<tbody>
<tr>
<td>rCl</td>
<td>rHCO3</td>
<td>rSO4</td>
</tr>
<tr>
<td>rHCO3</td>
<td>rCl</td>
<td>rSO4</td>
</tr>
<tr>
<td>rCa</td>
<td>rMg</td>
<td>rNa</td>
</tr>
<tr>
<td>rMg</td>
<td>rCa</td>
<td>rNa</td>
</tr>
</tbody>
</table>

Através do diagrama triangular de Piper, (Piper, 1944), Fig. 13, verifica-se que estas águas classificam-se, predominantemente, como cloro-sulfatadas cálcicas ou magnesianas, (63\%), e bicarbonatadas cálcicas ou magnesianas, (37\%).

Dentre os componentes químicos, o cloreto é aquele cujo mecanismo de concentração está mais diretamente dependente dos fa-
Fig. 13 - Águas dos Cársticos Bambuí

FONTE: Guerra (1956)
tores climáticos. Já vimos que este componente obedece à relação RCl rHCO₃ rSO₄ em 72,9% das amostras ao norte de Irecê e em 35% ao sul, acompanhando a tendência inversa de variação das precipitações, ou seja, maiores concentrações de cloretos ao norte. O mecanismo de concentração dos cloretos está diretamente relacionado à taxa de evaporação ou inversamente à taxa de infiltração, no caso dos calcários, fortemente influenciada pela presença das formas de absorção cárstica. Estas variam de norte para sul, já que também dependem das taxas de precipitações. Localmente, concentrações anormais em cloretos estariam associadas a problemas de circulação subterrânea deficiente ou por focos de poluição, não muito comuns na área.

Quanto aos ions Na⁺ e K⁺, que se apresentam entre os ions maiores, em valores percentuais bem mais baixos, teriam origens e mecanismos principais de concentração similares aos dos cloretos e secundariamente da dissolução de feldspatos, que aparecem nos calcários sob a forma de imputezas. Os teores em K⁺ são sempre menores do que os de Na⁺, provavelmente, em decorrência dos mecanismos de remoção seletiva deste ion, como as trocas de bases, adsorção pelas argilas e absorção pelos vegetais (Szikszay, 1981).

Os fatores relacionados à composição química da rocha e aos elementos estruturais são diretamente responsáveis pelo comportamento dos ions Ca²⁺, Mg²⁺, HCO₃⁻ e SO₄²⁻, que são provenientes da dissolução do próprio calcário e seus minerais associados. Assim, as maiores concentrações em magnésio estariam associadas à presença de níveis mais dolomíticos. Apesar dos dolomitos serem bem menos solúveis do que os carbonatos mais cálcicos, o magnésio tende a ser mais estável do que o cálcio, permanecendo em solução por mais tempo, (Szikszay op. cit.). Os sulfatos teriam como principal fonte a oxidação dos sulfetos, comuns na sequência carbonática Bambuí. No caso dos nitratos, verificou-se concentrações de até 132 mg/l. Estes provêm do carreamento de material orgânico para o interior do aquífero facilitado pelas formas abertas de absorção, próprias do carste.

CONCLUSÕES

a) Na Chapada de Irecê, tem-se como resultado da integração dos elementos fundamentais ao processo de carstificação, (água, composição química da rocha e elementos estruturais), em carste pouco desenvolvido em toda porção norte, em uma fase juvenil evoluindo gradativamente em direção sul. No extremo sul da área, trinta já em fase madura, o mesmo acontecendo na borda oriental, por efeito, especialmente, de maiores precipitações e da contribuição subterrânea dos quartzitos Chapada Diamantina.

b) O comportamento hidrogeológico geral ajusta-se perfeitamente ao quadro evolutivo do sistema cártico. Dessa forma, tem-se na porção norte, um aquífero de forte influência fissural, com a influência cártica evoluindo gradativamente no sentido sul e borda oriental. Ajustando-se perfeitamente a este quadro, temos as condições de recarga, circulação e armazenamento. Apesar das recargas se fazerem diretamente sobre toda superfície cártica, suas taxas variam regionalmente em função do maior ou menor de-
envolvimento da carstificaçao. A drenagem subterrânea se faz preferencialmente no sentido dos contatos com os quartzeitos Chapada Diamantina e destes em direção ao Rio São Francisco. Na região Central os fluxos tomam o sentido preferencial SW-NE acompanhando o vale do rio Jacaré em direção à América Dourada. A lança de Irecê, situa-se o principal alçao potenciometrico da Chapada Calcaréa, onde os fluxos divergem radialmente em todos os sentidos. Ao norte de Souto Soares, localiza-se o alto potenciometrico que funciona como divisor de águas entre as bacias do Rio São Francisco e Paraguaçu. A partir desse alto a drenagem subterrânea se faz preferencialmente no sentido SE.

c) Pela avaliação das potencialidades do aquífero, pode-se concluir que são fracas as condições de armazenamento em vista da sua natureza livre e da pouca profundidade de carstificação. Sua taxa média de recarga foi estimada em 3,9% das precipitações, ou 223.106 m³/ano, o que corresponde a 23,4.10³ m³/ano / km².

d) No que se refere à prática de preservação, pode-se afirmar que os aquíferos cársticos em decorrência de suas recargas à base de formas de absorção abertas, são considerados de alta vulnerabilidade. A utilização de defensivos agrícolas e adubos químicos deve ser evitada.

REFERÊNCIAS BIBLIOGRÁFICAS

HARGREAVES, G.H. - 1974 - Precipitation Dependability and Potentials for Agricultural Production in Northeast Brazil - Utah State University. Logan - Utah.

